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Abstract

Networked systems are often evaluated on overlay testbeds

such as PlanetLab and emulation testbeds such as Emu-

lab. Emulation testbeds give users great control over the

host and network environments and offer easy reproducibil-

ity, but only artificial network conditions. Overlay testbeds

provide real network conditions, but are not repeatable en-

vironments and provide less control over the experiment.

We describe the motivation, design, and implementation

of Flexlab, a new testbed with the strengths of both overlay

and emulation testbeds. It enhances an emulation testbed

by providing the ability to integrate a wide variety of net-

work models, including those obtained from an overlay net-

work. We present three models that demonstrate its use-

fulness, including “application-centric Internet modeling”

that we specifically developed for Flexlab. Its key idea is to

run the application within the emulation testbed and use its

offered load to measure the overlay network. These mea-

surements are used to shape the emulated network. Results

indicate that for evaluation of applications running over In-

ternet paths, Flexlab with this model can yield far more re-

alistic results than either PlanetLab without resource reser-

vations, or Emulab without topological information.

1 Introduction

Public network testbeds have become staples of the net-

working and distributed systems research communities,

and are widely used to evaluate prototypes of research sys-

tems in these fields. Today, these testbeds generally fall

into two categories: emulation testbeds such as the emula-

tion component of Emulab [37], which create artificial net-

work conditions that match an experimenter’s specification,

and overlay testbeds such as PlanetLab [27], which send an

experiment’s traffic over the Internet. Each type of testbed

has its own strengths and weaknesses. In this paper, we

present Flexlab, which bridges the two types of testbeds,

inheriting strengths from both.

Emulation testbeds such as Emulab and ModelNet [34]

give users full control over the host and network environ-

ments of their experiments, enabling a wide range of exper-

iments using different applications, network stacks, and op-

erating systems. Experiments run on them are repeatable,

to the extent that the application’s behavior can be made

deterministic. They are also well suited for developing

and debugging applications—two activities that represent

a large portion of the work in networked systems research

and are especially challenging in the wide area [1, 31].

However, emulation testbeds have a serious shortcoming:

their network conditions are artificial and thus do not ex-

hibit some aspects of real production networks. Perhaps

worse, researchers are not sure of two things: which net-

work aspects are poorly modeled, and which of these as-

pects matter to their application. We believe these are

two of the reasons researchers underuse emulation envi-

ronments. That emulators are underused has also been ob-

served by others [35].

Overlay testbeds, such as PlanetLab and the RON

testbed [2], overcome this lack of network realism by send-

ing experimental traffic over the real Internet. They can

thus serve as a “trial by fire” for applications on today’s In-

ternet. They also have potential as a service platform for

deployment to real end-users, a feature we do not attempt to

replicate with Flexlab. However, these testbeds have their

own drawbacks. First, they are typically overloaded, cre-

ating contention for host resources such as CPU, memory,

and I/O bandwidth. This leads to a host environment that is

unrepresentative of typical deployment scenarios. Second,

while it may eventually be possible to isolate most of an

experiment’s host resources from other users of the testbed,

it is impossible (by design) to isolate it from the Internet’s

varying conditions. This makes it fundamentally impossi-

ble to obtain repeatable results from an experiment. Fi-

nally, because hosts are shared among many users at once,

users cannot perform many privileged operations includ-

ing choosing the OS, controlling network stack parameters,

and modifying the kernel.

Flexlab is a new testbed environment that combines

the strengths of both overlay and emulation testbeds. In

Flexlab, experimenters obtain networks that exhibit real In-

ternet conditions and full, exclusive control over hosts. At

the same time, Flexlab provides more control and repeata-

bility than the Internet. We created this new environment

by closely coupling an emulation testbed with an overlay

testbed, using the overlay to provide network conditions

for the emulator. Flexlab’s modular framework qualita-

tively increases the range of network models that can be

emulated. In this paper, we describe this framework and



three models derived from the overlay testbed. These mod-

els are by no means the only models that can be built in the

Flexlab framework, but they represent interesting points in

the design space, and demonstrate the framework’s flexibil-

ity. The first two use traditional network measurements in

a straightforward fashion. The third, “application-centric

Internet modeling” (ACIM), is a novel contribution itself.

ACIM stems directly from our desire to combine the

strengths of emulation and live-Internet experimentation.

We provide machines in an emulation testbed, and “import”

network conditions from an overlay testbed. Our approach

is application-centric in that it confines itself to the network

conditions relevant to a particular application, using a sim-

plified model of that application’s own traffic to make its

measurements on the overlay testbed. By doing this in near

real-time, we create the illusion that network device inter-

faces in the emulator are distributed across the Internet.

Flexlab is built atop the most popular and advanced

testbeds of each type, PlanetLab and Emulab, and exploits

a public federated network data repository, the Datapos-

itory [3]. Flexlab is driven by Emulab testbed manage-

ment software [36] that we recently enhanced to extend

most of Emulab’s experimentation tools to PlanetLab sliv-

ers, including automatic link tracing, distributed data col-

lection, and control. Because Flexlab allows different net-

work models to be “plugged in” without changing the ex-

perimenter’s code or scripts, this testbed also makes it easy

to compare and validate different network models.

This paper extends our previous workshop paper [9], and

presents the following contributions:

(1) A software framework for incorporating a variety of

highly-dynamic network models into Emulab;

(2) The ACIM emulation technique that provides high-

fidelity emulation of live Internet paths;

(3) Techniques that infer available bandwidth from the TCP

or UDP throughput of applications that do not continually

saturate the network;

(4) An experimental evaluation of Flexlab and ACIM;

(5) A flexible network measurement system for PlanetLab.

We demonstrate its use to drive emulations and construct

simple models. We also present data that shows the signif-

icance on PlanetLab of non-stationary network conditions

and shared bottlenecks, and of CPU scheduling delays.

Finally, Flexlab is currently deployed in Emulab in beta

test, will soon be enabled for public production use, and

will be part of an impending Emulab open source release.

2 Flexlab Architecture

The architecture of the Flexlab framework is shown in Fig-

ure 1. The application under test runs on emulator hosts,

where the application monitor instruments its network op-

erations. The application’s traffic passes through the path

emulator, which shapes it to introduce latency, limit band-

Figure 1: Architecture of the Flexlab framework. Any network

model can be “plugged in,” and can optionally use data from the

application monitors or measurement repository.

width, and cause packet loss. The parameters for the path

emulator are controlled by the network model, which may

optionally take input from the monitor, from the network

measurement repository, and from other sources. Flexlab’s

framework provides the ability to incorporate new network

models, including highly dynamic ones, into Emulab. All

parts of Flexlab except for the underlying emulation testbed

are user-replaceable.

2.1 Emulator
Flexlab runs on top of the Emulab testbed management sys-

tem, which provides critical management infrastructure. It

provides automated setup of emulated experiments by con-

figuring hosts, switches, and path emulators within min-

utes. Emulab also provides a “full-service” interface for

distributing experimental applications to nodes, control-

ling those applications, collecting packet traces, and gath-

ering of log files and other results. These operations can

be controlled and (optionally) fully automated by a flexi-

ble, secure event system. Emulab’s portal extends all of

these management benefits to PlanetLab nodes. This makes

Emulab an ideal platform for Flexlab, as users can easily

move back and forth between emulation, live experimen-

tation, and Flexlab experimentation. New work [10] inte-

grates a full experiment and data management system into

Emulab—indeed, we used that “workbench” to gather and

manage many of the results in this paper.

2.2 Application Monitor
The application monitor reports on the network operations

performed by the application, such as the connections it

makes, its packet sends and receives, and the socket options

it sets. This information can be sent to the network model,

which can use it to track which paths the application uses

and discover the application’s offered network load. Know-

ing the paths in use aids the network model by limiting

the set of paths it must measure or compute; most applica-

tions will use only a small subset of the n2 paths between

n hosts. We describe the monitor in more detail later.

2.3 Path Emulator
The path emulator shapes traffic from the emulator hosts.

It can, for example, queue packets to emulate delay, de-
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queue packets at a specific rate to control bandwidth, and

drop packets from the end of the queue to emulate sat-

urated router queues. Our path emulator is an enhanced

version of FreeBSD’s Dummynet [28]. We have made ex-

tensive improvements to Dummynet to add support for the

features discussed in Section 5.2, as well as adding support

for jitter and for several distributions: uniform, Poisson,

and arbitrary distributions determined by user-supplied ta-

bles. Dummynet runs on separate hosts from the applica-

tion, both to reduce contention for host resources, and so

that applications can be run on any operating system.

For Flexlab we typically configure Dummynet so that it

emulates a “cloud,” abstracting the Internet as a set of per-

flow pairwise network characteristics. This is a significant

departure from Emulab’s typical use: it is typically used

with router-level topologies, although the topologies may

be somewhat abstracted. The cloud model is necessary for

us because our current models deal with end-to-end condi-

tions, rather than trying to reverse engineer the Internet’s

router-level topology.

A second important piece of our path emulator is its con-

trol system. The path emulator can be controlled with Em-

ulab’s event system, which is built on a publish/subscribe

system. “Delay agents” on the emulator nodes subscribe to

events for the paths they are emulating, and update char-

acteristics based on the events they receive. Any node can

publish new characteristics for paths, which makes it easy

to support both centralized and distributed implementations

of network models. For example, control is equally easy by

a single process that computes all model parameters or by a

distributed system in which measurement agents indepen-

dently compute the parameters for individual paths. The

Emulab event system is lightweight, making it feasible to

implement highly dynamic network models that send many

events per second, and it is secure: event senders can affect

only their own experiments.

2.4 Network Model

The network model supplies network conditions and pa-

rameters to the path emulator. The network model is the

least-constrained component of the Flexlab architecture;

the only constraint on a model implementation is that it

must configure the path emulator through the event system.

Thus, a wide variety of models can be created. A model

may be static, setting network characteristics once at the

beginning of an experiment, or dynamic, keeping them up-

dated as the experiment proceeds. Dynamic network set-

tings may be sent in real-time as the experiment proceeds,

or the settings may be pre-computed and scheduled for de-

livery by Emulab’s event scheduler.

We have implemented three distinct network models,

discussed later. All of our models pair up each emulator

node with a node in the overlay network, attempting to give

the emulator node the same view of network characteristics

as its peer in the overlay. The architecture, however, does

not require that models come directly from overlay mea-

surements. Flexlab can just as easily be used with network

models from other sources, such as analytic models.

2.5 Measurement Repository

Flexlab’s measurements are currently stored in Andersen

and Feamster’s Datapository. Information in the Datapos-

itory is available for use in constructing or parameterizing

network models, and the networking community is encour-

aged to contribute their own measurements. We describe

Flexlab’s measurement system in the next section.

3 Wide-area Network Monitoring

Good measurements of Internet conditions are important

in a testbed context for two reasons. First, they can be

used as input for network models. Second, they can be

used to select Internet paths that tend to exhibit a chosen

set of properties. To collect such measurements, we devel-

oped and deployed a wide area network monitor, Flexmon.

It has been running for a year, placing into the Datapos-

itory half a billion measurements of connectivity, latency,

and bandwidth between PlanetLab hosts. Flexmon’s design

provides a measurement infrastructure that is shared, reli-

able, safe, adaptive, controllable, and accommodates high-

performance data retrieval. Flexmon has some features in

common with other measurement systems such as S3 [39]

and Scriptroute [32], but is designed for shared control over

measurements and the specific integration needs of Flexlab.

Flexmon, shown in Figure 2, consists of five compo-

nents: path probers, the data collector, the manager, man-

ager clients, and the auto-manager client. A path prober

runs on each PlanetLab node, receiving control commands

from a central source, the manager. A command may

change the measurement destination nodes, the type of

measurement, and the frequency of measurement. Com-

mands are sent by experimenters, using a manager client,

or by the auto-manager client. The purpose of the auto-

manager client is to maintain measurements between all

PlanetLab sites. The auto-manager client chooses the least

CPU-loaded node at each site to include in its measurement

set, and makes needed changes as nodes and sites go up

and down. The data collector runs on a server in Emulab,

collecting measurement results from each path prober and

storing them in the Datapository. To speed up both queries

and updates, it contains a write-back cache in the form of a

small database instance.

Due to the large number of paths between Planet-

Lab nodes, Flexmon measures each path at fairly low

frequency—approximately every 2.5 hours for bandwidth,

and 10 minutes for latency. To get more detail, experi-

menters can control Flexmon’s measurement frequency of

any path. Flexmon maintains a global picture of the net-
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Figure 2: The components of Flexmon and their communication.

work resources it uses, and caps and adjusts the measure-

ment rates to maintain safety to PlanetLab.

Flexmon currently uses simple tools to collect mea-

surements: iperf for bandwidth, and fping for latency

and connectivity. We had poor results from initial exper-

iments with packet-pair and packet-train tools, including

pathload and pathchirp. Our guiding principles thus

far have been that the simpler the tool, the more reliable it

typically is, and that the most accurate way of measuring

the bandwidth available to a TCP stream is to use a TCP

stream. Flexmon has been designed, however, so that it is

relatively simple to plug in other measurement tools. For

example, tools that trade accuracy for reduced network load

or increased scalability [8, 13, 21, 23] could be used, or we

could take opportunistic measurements of large file trans-

fers by the CDNs on PlanetLab.

Flexmon’s reliability is greatly improved by buffering

results at each path prober until an acknowledgment is re-

ceived from the data collector. Further speedup is possible

by directly pushing new results to requesting Flexlab ex-

periments instead of having them poll the database.

4 Simple Measurement-Driven Models

We have used measurements taken by Flexmon to build

two simple, straightforward network models. These mod-

els represent incremental improvements over the way em-

ulators are typically used today. Experimenters typically

choose network parameters on an ad hoc basis and keep

them constant throughout an experiment. Our simple-static

model improves on this by using actual measured Internet

conditions. The simple-dynamic model goes a step further

by updating conditions as the experiment proceeds. Be-

cause the measurements used by these models are stored

permanently in the Datapository, it is trivial to “replay” net-

work conditions starting at any point in the past. Another

benefit is that the simple models run entirely outside of the

emulated environment itself, meaning that no restrictions

are placed on the protocols, applications, or operating sys-

tems that run on the emulator hosts. The simple models do

have some weaknesses, which we discuss in this section.

These weaknesses are addressed by our more sophisticated

model, ACIM, in Section 5.

4.1 Simple-static and Simple-dynamic

In both the simple-static and simple-dynamic models, each

PlanetLab node in an experiment is associated with a cor-

responding emulation node in Emulab. A program called

dbmonitor runs on an Emulab server, collecting path char-

acteristics for each relevant Internet path from the Datapos-

itory. It applies the characteristics to the emulated network

via the path emulator.

In simple-static mode, dbmonitor starts at the begin-

ning of an experiment, reads the path characteristics from

the DB, issues the appropriate events to the emulation

agents, and exits. This model places minimal load on the

path emulators and the emulated network, at the expense

of fidelity. If the real path characteristics change during an

experiment, the emulated network becomes inaccurate.

In simple-dynamic mode the experimenter controls the

frequencies of measurement and emulator update. Before

the experiment starts, dbmonitor commands Flexmon to

increase the frequency of probing for the set of PlanetLab

nodes involved in the experiment. Similarly, dbmonitor

queries the DB and issues events to the emulator at the

specified frequency, typically on the order of seconds. The

dynamic model addresses some of the fidelity issues of the

simple-static model, but it is still constrained by practical

limits on measurement frequency.

4.2 Stationarity of Network Conditions

The simple models presented in this section are limited in

the detail they can capture, due to a fundamental tension.

We would like to take frequent measurements, to maximize

the models’ accuracy. However, if they are too frequent,

measurements of overlapping paths (such as from a sin-

gle source to several destinations) will necessarily overlap,

causing interference that may perturb the network condi-

tions. Thus, we must limit the measurement rate.

To estimate the effect that low measurement rates have

on accuracy, we performed an experiment. We sent pings

between pairs of nodes every 2 seconds for 30 min-

utes. We analyzed the latency distribution to find “change

points” [33], which are times when the mean value of

the latency samples changes. This statistical technique

was used in a classic paper on Internet stationarity [41];

our method is similar to their “CP/Bootstrap” test. This

analysis provides insight into the required measurement

frequency—the more significant events missed, the poorer

the accuracy of a measurement.

Table 1 shows some of the results from this test. We used

representative nodes in Asia, Europe, and North America.

One set of North American nodes was connected to the

commercial Internet, and the other set to Internet2. The
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Path High Low Change

Asia to Asia 2 1 0.13%

Asia to Commercial 2 0 2.9%

Asia to Europe 4 0 0.5%

Asia to I2 6 0 0.59%

Commercial to Commercial 20 2 39%

Commercial to Europe 4 0 3.4%

Commercial to I2 13 1 15%

I2 to I2 4 0 0.02%

I2 to Europe 0 0 –

Europe to Europe 9 1 12%

Table 1: Change point analysis for latency.

first column shows the number of change points seen in

this half hour. In the second column, we have simulated

measurement at lower frequencies by sampling our high-

rate data; we used only one of every ten measurements,

yielding an effective sampling interval of 20 seconds. Fi-

nally, the third column shows the magnitude of the median

change, in terms of the median latency for the path.

Several of the paths are largely stable with respect to

latency, exhibiting few change points even with high-rate

measurements, and the magnitude of the few changes is

low. However, three of the paths (in bold) have a large

number of change points, and those changes are of sig-

nificant magnitude. In all cases, the low-frequency data

misses almost all change points. In addition, we cannot be

sure that our high-frequency measurements have found all

change points. The lesson is that there are enough signif-

icant changes at small time scales to justify, and perhaps

even necessitate, high-frequency measurements.

In Section 5, we describe application-centric Internet

modeling, which addresses this accuracy problem by us-

ing the application’s own traffic patterns to make measure-

ments. In that case, the only load on the network, and

the only self-interference induced, is that which would be

caused by the application itself.

4.3 Modeling Shared Bottlenecks
There is a subtle complexity in network emulation based on

path measurements of available bandwidth. This complex-

ity arises when an application has multiple simultaneous

network flows associated with a single node in the exper-

iment. Because Flexmon obtains pairwise available band-

width measurements using independent iperf runs, it does

not reveal bottlenecks shared by multiple paths. Thus, in-

dependently modeling flows originating at the same host

but terminating at different hosts can cause inaccuracies if

there are shared bottlenecks. This is mitigated by the fact

that if there is a high degree of statistical multiplexing on

the shared bottleneck, interference by other flows domi-

nates interference by the application’s own flows [14]. In

that case, modeling the application’s flows as independent

is still a reasonable approximation.

In the “cloud” configuration of Dummynet we model

flows originating at the same host as being non-interfering.

Sum of multiple TCP flows

Path 1 flow 5 flows 10 flows

Commodity Internet Paths

PCH to IRO 485 K 585 K 797 K

IRP to UCB-DSL 372 K 507 K 589 K

PBS to Arch. Tech. 348 K 909 K 952 K

Internet2 Paths

Illinois to Columbia 3.95 M 9.05 M 9.46 M

Maryland to Calgary 3.09 M 15.4 M 30.4 M

Colorado St. to Ohio St. 225 K 1.20 M 1.96 M

Table 2: Available bandwidth estimated by multiple iperf flows,

in bits per second. The PCH to IRO path is administratively lim-

ited to 10 megabits, and the IRP to UCB-DSL path is administra-

tively limited to 1 megabit.

To understand how well this assumption holds, we mea-

sured multiple simultaneous flows on PlanetLab paths,

shown in Table 2. For each path we ran three tests in se-

quence for 30 seconds each: a single TCP iperf, five TCP

iperfs in parallel, and finally ten TCP iperfs in parallel.

The reverse direction of each path, not shown, produced

similar results.

Our experiment revealed a clear distinction between

paths on the commodity Internet and those on Internet2

(I2). On the commodity Internet, running more TCP

flows achieves only marginally higher aggregate through-

put. On I2, however, five flows always achieve much higher

throughput than one flow. In all but one case, ten flows also

achieve significantly higher throughput than five. Thus, our

previous assumption of non-interference between multiple

flows holds true for the I2 paths tested, but not for the com-

modity Internet paths.

This difference may be a consequence of several possi-

ble factors. It could be due to the fundamental properties

of these networks, including proximity of bottlenecks to

the end hosts and differing degrees of statistical multiplex-

ing. It could also be induced by peculiarities of PlanetLab.

Some sites impose administrative limits on the amount of

bandwidth PlanetLab hosts may use, PlanetLab attempts to

enforce fair-share network usage between slices, and the

TCP stack in the PlanetLab kernel is not tuned for high per-

formance on links with high bandwidth-delay products (in

particular, TCP window scaling is disabled).

To model this behavior, we developed additional simple

Dummynet configurations. In the “shared” configuration, a

node is assumed to have a single bottleneck that is shared

by all of its outgoing paths, likely its last-mile link. In the

“hybrid” configuration, some paths use the cloud model

and others the shared model. The rules for hybrid are: If a

node is an I2 node, it uses the cloud model for I2 destina-

tion nodes, and the shared model for all non-I2 destination

nodes. Otherwise, it uses the shared model for all destina-

tions. The bandwidth for shared pipes is set to the maxi-

mum found for any destination in the experiment. Flexlab

users can select which Dummynet configuration to use.
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Clearly, more sophisticated shared-bottleneck models

are possible for the simple models. For example, it might

be possible to identify bottlenecks with Internet tomog-

raphy, such as iPlane [21]. Our ACIM model, discussed

next, takes a completely different approach to the shared-

bottleneck problem.

5 Application-Centric Internet Modeling

The limitations of our simple models lead us to develop a

more complex technique, application-centric Internet mod-

eling. The difficulties in simulating or emulating the Inter-

net are well known [12, 20], though progress is continually

made. Likewise, creating good general-purpose models of

the Internet is still an open problem [11]. While progress

has been made on measuring and modeling aspects of the

Internet sufficient for certain uses, such as improving over-

lay routing or particular applications [21, 22], the key diffi-

culty we face is that a general-purpose emulator, in theory,

has a stringent accuracy criterion: it must yield accurate re-

sults for any measurement of any workload.

ACIM approaches the problem by modeling the Inter-

net as perceived by the application—as viewed through its

limited lens. We do this by running the application and

Internet measurements simultaneously, using the applica-

tion’s behavior running inside Emulab to generate traffic

on PlanetLab and collect network measurements. The net-

work conditions experienced by this replicated traffic are

then applied, in near real-time, to the application’s emu-

lated network environment.

ACIM has five primary benefits. The first is in terms of

node and path scaling. A particular instance of any ap-

plication will use a tiny fraction of all of the Internet’s

paths. By confining measurement and modeling only to

those paths that the application actually uses, the task be-

comes more tractable. Second, we avoid numerous mea-

surement and modeling problems, by assessing end-to-end

behavior rather than trying to model the intricacies of the

network core. For example, we do not need precise in-

formation on routes and types of outages—we need only

measure their effects, such as packet loss and high latency,

on the application. Third, rare or transient network effects

are immediately visible to the application. Fourth, it yields

accurate information on how the network will react to the

offered load, automatically taking into account factors that

are difficult or impossible to measure without direct access

to the bottleneck router. These factors include the degree

of statistical multiplexing, differences in TCP implementa-

tions and RTTs of the cross traffic, the router’s queuing dis-

cipline, and unresponsive flows. Fifth, it tracks conditions

quickly, by creating a feedback loop which contiually ad-

justs offered loads and emulator settings in near real-time.

ACIM is precise because it assesses only relevent parts

of the network, and it is complete because it automatically

Figure 3: The architecture and data flow of application-centric

Internet modeling.

accounts for all potential network-related behavior. (Of

course, it is precise in terms of paths, not traffic.) Its con-

crete approach to modeling and its level of fidelity should

provide an environment that experimenters can trust when

they do not know their application’s dependencies.

Our technique makes two common assumptions about

the Internet: that the location of the bottleneck link does

not change rapidly (though its characteristics may), and

that most packet loss is caused by congestion, either due

to cross traffic or its own traffic. In the next section, we

first concentrate on TCP flows, then explain how we have

extended the concepts to UDP.

5.1 Architecture

We pair each node in the emulated network with a peer in

the live network, as shown in Figure 3. The portion of this

figure that runs on PlanetLab fits into the “network model”

portion of the Flexlab architecture shown in Figure 1. The

ACIM architecture consists of three basic parts: an applica-

tion monitor which runs on Emulab nodes, a measurement

agent which runs on PlanetLab nodes, and a path emulator

connecting the Emulab nodes. The agent receives charac-

teristics of the application’s offered load from the monitor,

replicates that load on PlanetLab, determines path charac-

teristics through analysis of the resulting TCP stream, and

sends the results back into the path emulator as traffic shap-

ing parameters. We now detail each of these parts.

Application Monitor on Emulab. The application

monitor runs on each node in the emulator and tracks

the network calls made by the application under test. It

tracks the application’s network activity, such as connec-

tions made and data sent on those connections. The mon-

itor uses this information to create a simple model of the

offered network load and sends this model to the measure-

ment agent on the corresponding PlanetLab node. The

monitor supports both TCP and UDP sockets. It also re-

ports on important socket options, such as socket buffer

sizes and the state of TCP’s TCP NODELAY flag.

We instrument the application under test by linking it

with a library we created called libnetmon. This library’s

purpose is to provide the model with information about the
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application’s network behavior. It wraps network system

calls such as connect(), accept(), send(), sendto(),

and setsockopt(), and informs the application monitor

of these calls. In many cases, it summarizes: for exam-

ple, we do not track the full contents of send() calls,

simply their sizes and times. libnetmon can be dynam-

ically linked into a program using the LD PRELOAD fea-

ture of modern operating systems, meaning that most ap-

plications can be run without modification. We have tested

libnetmon with a variety of applications, ranging from

iperf to Mozilla Firefox to Sun’s JVM.

By instrumenting the application directly, rather than

snooping on network packets it puts on the wire, we are

able to measure the application’s offered load rather than

simply the throughput achieved. This distinction is impor-

tant, because the throughput achieved is, at least in part, a

function of the parameters the model has given to the path

emulator. Thus, we cannot assume that what an application

is able to do is the same as what it is attempting to do. If,

for example, the available bandwidth on an Internet path in-

creases, so that it becomes greater than the bandwidth set-

ting of the corresponding path emulator, offering only the

achieved throughput on this path would fail to find the ad-

ditional available bandwidth.

Measurement Agent on PlanetLab. The measurement

agent runs on PlanetLab nodes, and receives information

from the application monitor about the application’s net-

work operations. Whenever the application running on

Emulab connects to one of its peers (also running inside

Emulab), the measurement agent likewise connects to the

agent representing the peer. The agent uses the simple

model obtained by the monitor to generate similar network

load; the monitor keeps the agent informed of the send()

and sendto() calls made by the application, including the

amount of data written and the time between calls. The

agent uses this information to recreate the application’s net-

work behavior, by making analogous send() calls. Note

that the offered load model does not include the applica-

tion’s packet payload, making it relatively lightweight to

send from the monitor to the agent.

The agent uses libpcap to inspect the resulting packet

stream and derive network conditions. For every ACK it

receives from the remote agent, it calculates instantaneous

throughput and RTT. For TCP, we use TCP’s own ACKs,

and for UDP, we add our own application-layer ACKs. The

agent uses these measurements to generate parameters for

the path emulator, discussed below.

5.2 Inference and Emulation of Path Conditions

Our path emulator is an enhanced version of the Dummynet

traffic shaper. We emulate the behavior of the bottleneck

router’s queue within this shaper as shown in Figure 4.

Dummynet uses two queues: a bandwidth queue, which

emulates queuing delay, and a delay queue, which models

queuing
delay

available 
bandwidth

other
delay

Packets 
enter

Packets 
leave

Figure 4: Path emulation

all other sources of delay, such as propagation, processing,

and transmission delays. Thus, there are three important

parameters: the size of the bandwidth queue, the rate at

which it drains, and the length of time spent in the delay

queue. Since we assume that most packet loss is caused by

congestion, we induce loss only by limiting the size of the

bandwidth queue and the rate it drains.

Because the techniques in this section require that there

be application traffic to measure, we use the simple-static

model to set initial conditions for each path. They will only

be experienced by the first few packets; after that, ACIM

provides higher-quality measurements.

Bandwidth Queue Size. The bandwidth queue has a fi-

nite size, and when it is full, packets arriving at the queue

are dropped. The bottleneck router has a queue whose max-

imum capacity is measured in terms of bytes and/or pack-

ets, but it is difficult to directly measure either of these ca-

pacities. Sommers et al. [29] proposed using the maximum

one-way delay as an approximation of the size of the bot-

tleneck queue. This approach is problematic on PlanetLab

because of the difficulty of synchronizing clocks, which is

required to calculate one-way delay. Instead, we approx-

imate the size of the queue in terms of time—that is, the

longest time one of our packets has spent in the queue with-

out being dropped. We assume that congestion will happen

mostly along the forward edge of a network path, and thus

can approximate the maximum queuing delay by subtract-

ing the minimum RTT from the maximum RTT. We refine

this number by finding the maximum queuing delay just

before a loss event.

Available Bandwidth. TCP’s fairness (the fraction of

the capacity each flow receives) is affected by differences

in the RTTs of flows sharing the link [18]. Measuring the

RTTs of flows we cannot directly observe is difficult or im-

possible. Thus, the most accurate way to determine how

the network will react to the load offered by a new flow is

to offer that load and observe the resulting path properties.

We observe the inter-send times of acknowledgment

packets and the number of bytes acknowledged by each

packet to determine the instantaneous goodput of a connec-

tion: goodput = (bytes acked)/(time since last ack).
We then estimate the throughput of a TCP connection be-

tween PlanetLab nodes by computing a moving average of

the instantaneous goodput measurements for the preceding

half-second. This averages out any outliers, allowing for a
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more consistent metric.

This measurement takes into account the reactivity of

other flows in the network. While calculating this good-

put is straightforward, there are subtleties in mapping to

available bandwidth. The traffic generated by the measure-

ment agent may not fully utilize the available bandwidth.

For instance, if the load generated by the application is

lower than the available bandwidth, or TCP fills the receive

window, the throughput does not represent available band-

width. When this situation is detected, we should not cap

the emulator bandwidth to that artificially slow rate. Thus,

we lower the bandwidth used by the emulator only if we

detect that we are fully loading the PlanetLab path. If we

see a goodput that is higher than the goodput when we last

saturated the link, then the available bandwidth must have

increased, and we raise the emulator bandwidth.

Queuing theory shows that when a buffered link is

overutilized, the time each packet spends in the queue,

and thus the observed RTT, increases for each successive

packet. Additionally, send() calls tend to block when the

application is sending at a rate sufficient to saturate the

bottleneck link. In practice, since each of these signals is

noisy, we use a combination of them to determine when

the bottleneck link is saturated. To determine whether RTT

is increasing or decreasing, we find the slope of RTT vs.

sample number using least squares linear regression.

Other Delay. The measurement agent takes fine-grained

latency measurements. It records the time each packet is

sent, and when it receives an ACK for that packet, cal-

culates the RTT seen by the most recent acknowledged

packet. For the purposes of emulation, we calculate the

“Base RTT” the same way as TCP Vegas [5]: that is, the

minimum RTT recently seen. This minimum delay ac-

counts for the propagation, processing, and transmission

delays along the path with a minimum of influence by

queuing delay.

We set the delay queue’s delay to half the base RTT to

avoid double-counting queuing latency, which is modeled

in the bandwidth queue.

Outages and Rare Events. There are many sources

of outages and other anomalies in network characteristics.

These include routing anomalies, link failures, and router

failures. Work such as PlanetSeer [40] and numerous BGP

studies seeks to explain the causes of these anomalies. Our

application-centric model has an easier task: to faithfully

reproduce the effect of these rare events, rather than find-

ing the underlying cause. Thus, we observe the features of

these rare events that are relevant to the application. Out-

ages can affect Flexlab’s control plane, however, by cutting

off Emulab from one or more PlanetLab nodes. In future

work, we can improve robustness by using an overlay net-

work such as RON [2].

Per-Flow Emulation. In our application-centric model,

the path emulator is used to shape traffic on a per-flow

rather than a per-path basis. If there is more than one flow

using a path, the bandwidth seen by each flow depends on

many variables, including the degree of statistical multi-

plexing on the bottleneck link, when the flows begin, and

the queuing policy on the bottleneck router. We let this

contention for resources occur in the overlay network, and

reflect the results into the emulator by per-flow shaping.

5.3 UDP Sockets

ACIM for UDP differs in some respects from ACIM for

TCP. The chief difference is that there are no protocol-level

ACKs in UDP. We have implemented a custom application-

layer protocol on top of UDP that adds the ACKs needed

for measuring RTT and throughput. This change affects

only the replication and measurement of UDP flows; path

emulation remains unchanged.

Application Layer Protocol. Whereas the TCP ACIM

sends random payloads in its measurement packets, UDP

ACIM runs an application-layer protocol on top of them.

The protocol embeds sequence numbers in the packets on

the forward path, and on the reverse path, sequence num-

bers and timestamps acknowledge received packets. Our

protocol requires packets to be at least 57 bytes long; if the

application sends packets smaller than this, the measure-

ment traffic uses 57-byte packets.

Unlike TCP, our UDP acknowledgements are selective,

not cumulative, and we also do not retransmit lost pack-

ets. We do not need all measurement traffic to get through,

we simply measure how much does. An ACK packet is

sent for every data packet received, but each ACK packet

contains ACKs for several recent data packets. This redun-

dancy allows us to get accurate bandwidth numbers without

re-sending lost packets, and works in the face of moderate

ACK packet loss.

Available Bandwidth. Whenever an ACK packet is re-

ceived at the sender, goodput is calculated as g = s/(tn −

tn−1), where g is goodput, s is the size of the data be-

ing acknowledged, tn is the receiver timestamp for the cur-

rent ACK, and tn−1 is the last receiver ACK timestamp

received. By using inter-packet timings from the receiver,

we avoid including jitter on the ACK path in our calcula-

tions, and the clocks at the sender and receiver need not be

synchronized. Throughput is calculated as a moving aver-

age over the last 100 acknowledged packets or half second,

whichever is less. If any packet loss has been detected, this

throughput value is fed to the application monitor as the

available bandwidth on the forward path.

Delay measurements. Base RTT and queuing delay are

computed the same way for UDP as they are for TCP.

Reordering and Packet Loss. Because TCP acknowl-

edgements are cumulative, reordering of packets on the for-

ward path is implicitly taken care of. We have to handle it

explicitly in the case of UDP. Our UDP measurement pro-

tocol can detect packet reordering in both directions. Be-
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cause each ACK packet carries redundant ACKs, reorder-

ing on the reverse path is not of concern. A data packet is

considered to be lost if ten packets sent after it have been

acknowledge. It is also considered lost if the difference be-

tween the receipt time of the latest ACK and the send time

of the data packet is greater than 10 · (average RTT + 4 ·

standard deviation of recent RTTs).

5.4 Challenges

Although the design of ACIM is straightforward when

viewed at a high level, there are a host of complications

that limit the accuracy of the system. Each was a signifi-

cant barrier to implementation; we describe two.

Libpcap Loss. We monitor the connections on the mea-

surement agent with libpcap. The libpcap library copies

a part of each packet as it arrives or leaves the (virtual) in-

terface and stores them in a buffer pending a query by the

application. If packets are added to this buffer faster than

they are removed by the application, some of them may

be dropped. The scheduling behavior described in Ap-

pendix A is a common cause of this occurrence, as pro-

cesses can be starved of CPU for hundreds of milliseconds.

These dropped packets are still seen by the TCP stack in

the kernel, but they are not seen by the application.

This poses two problems. First, we found it not uncom-

mon for all packets over a long period of time (up to a sec-

ond) to be dropped by the libpcap buffer. In this case it is

impossible to know what has occurred during that period.

The connection may have been fully utilizing its available

bandwidth or it may have been idle during part of that time,

and there is no way to reliably tell the difference. Second,

if only one or a few packets are dropped by the libpcap

buffer, the “falseness” of the drops may not be detectable

and may skew the calculations.

Our approach is to reset our measurements after periods

of detected loss, no matter how small. This avoids the po-

tential hazards of averaging measurements over a period of

time when the activity of the connection is unknown. The

downside is that in such a situation, a change in bandwidth

would not be detected as quickly and we may average mea-

surements over non-contiguous periods of time. We know

of no way to reliably detect which stream(s) a libpcap

loss has affected in all cases, so we must accept that there

are inevitable limits to our accuracy.

Ack Bursts. Some paths on PlanetLab have anomalous

behaviors. The most severe example of this is a path that

delivers bursts of acknowledgments over small timescales.

In one case, acks that were sent over a period of 12 mil-

liseconds arrived over a period of less than a millisecond,

an order of magnitude difference. This caused some over-

estimation of delay (by up to 20%), and an order of magni-

tude over-estimation of throughput. We cope with this phe-

nomenon in two ways. First, we use TCP timestamps to

obtain the ACK inter-departure times on the receiver rather

than the ACK inter-arrival times on the sender. This tech-

nique corrects for congestion and other anomalies on the

reverse path. Second, we lengthened the period over which

we average (to about 0.5 seconds), which is also needed to

dampen excessive jitter.

6 Evaluation

We evaluate Flexlab by presenting experimental results

from three microbenchmarks and a real application. Our re-

sults show that Flexlab is more faithful than simple emula-

tion, and can remove artifacts of PlanetLab host conditions.

Doing a rigorous validation of Flexlab is extremely diffi-

cult, because it seems impossible to establish ground truth:

each environment being compared can introduce its own

artifacts. Shared PlanetLab nodes can hurt performance,

experiments on the live Internet are fundamentally unre-

peatable, and Flexlab might introduce artifacts through its

measurement or path emulation. With this caveat, our re-

sults show that for at least some complex applications run-

ning over the Internet, Flexlab with ACIM produces more

accurate and realistic results than running with the host

resources typically available on PlanetLab, or in Emulab

without network topology information.

6.1 Microbenchmarks

We evaluate ACIM’s detailed fidelity using iperf, a stan-

dard measurement tool that simulates bulk data transfers.

iperf’s simplicity makes it ideal for microbenchmarks, as

its behavior is consistent between runs. With TCP, it sim-

ply sends data at the fastest possible rate, while with UDP

it sends at a specified constant rate. The TCP version is, of

course, highly reactive to network changes.

As in all of our experiments, each application tested on

PlanetLab and each major Flexlab component (measure-

ment agent, Flexmon) are run in separate slices.

6.1.1 TCP iperf and Cross-Traffic

Figure 5 shows the throughput of a representative two

minute run in Flexlab of iperf using TCP. The top graph

shows throughput achieved by the measurement agent,

which replicated iperf’s offered load on the Internet be-

tween AT&T and the Univ. of Texas at Arlington. The bot-

tom graph shows the throughput of iperf itself, running

on an emulated path and dedicated hosts inside Flexlab.

To induce a change in available bandwidth, between

times 35 and 95 we sent cross-traffic on the Internet path,

in the form of ten iperf streams between other PlanetLab

nodes at the same sites. Flexlab closely tracks the changed

bandwidth, bringing the throughput of the path emulator

down to the new level of available bandwidth. It also tracks

network changes that we did not induce, such as the one at

time 23. However, brief but large drops in throughput oc-

casionally occur in the PlanetLab graph but not the Flexlab
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Figure 5: Application-centric Internet modeling, comparing agent

throughput on PlanetLab (top) with the throughput of the applica-

tion running in Emulab and interacting with the model (bottom).
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Figure 6: Comparison of the throughput of a TCP iperf running

on PlanetLab (top) with a TCP iperf simultaneously running un-

der Flexlab with ACIM (bottom).

graph, such as those starting at time 100. Through log file

analysis we determined that these drops are due to tem-

porary CPU starvation on PlanetLab, preventing even the

lightweight measurement agent from sustaining the send-

ing rate of the real application. These throughput drops

demonstrate the impact of the PlanetLab scheduling de-

lays documented in Appendix A. The agent correctly de-

termines that these reductions in throughput are not due to

available bandwidth changes, and deliberately avoids mir-

roring these PlanetLab host artifacts on the emulated path.

Finally, the measurement agent’s throughput exhibits more

jitter than the application’s, showing that we could proba-

bly further improve ACIM by adding a jitter model.

6.1.2 Simultaneous TCP iperf Runs

ACIM is designed to subject an application in the emula-

tor to the same network conditions that application would
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Figure 7: The UDP throughput of iperf (below) compared with

the actual throughput successfully sent by the measurement agent

(above) when using the ACIM model in Flexlab.

see on the Internet. To evaluate how well ACIM meets this

goal, we compared two instances of iperf: one on Plan-

etLab, and one in Flexlab. Because we cannot expect runs

done on the Internet at different times to show the same re-

sults, we ran these two instances simultanously. The top

graph in Figure 6 shows the throughput of iperf run di-

rectly on PlanetLab between NEC Labs and Intel Research

Seattle. The bottom graph shows the throughput of another

iperf run at the same time in Flexlab, between the same

“hosts.” As network characteristics vary over the connec-

tion’s lifetime, the throughput graphs correspond impres-

sively. The average throughputs are close: PlanetLab was

2.30 Mbps, while Flexlab was 2.41 Mbps (4.8% higher).

These results strongly suggest that ACIM has high fidelity.

The small difference may be due to CPU load on Planet-

Lab; we speculate that difference is small because iperf

consumes few host resources, unlike a real application on

which we report shortly.

6.1.3 UDP iperf

We have made an initial evaluation of the UDP ACIM sup-

port, which is newer than our TCP support. We used a

single iperf to generate a 900 Kbps UDP stream. As in

Sec. 6.1.1, we measured the throughput achieved by both

the measurement agent on PlanetLab and the iperf stream

running on Flexlab. The graphs in Figure 7 closely track

each other. The mean throughputs are close: 746 Kbps

for Iperf, and 736 Kbps for the measurement agent, 1.3%

lower. We made three similar runs between these nodes, at

target rates varying from 800–1200 Kbps. The differences

in mean throughput were similar: -2.5%, 0.4%, and 4.4%.

ACIM’s UDP accuracy appears very good in this range. A

more thorough evaluation is future work.
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6.2 Macrobenchmark: BitTorrent

This next set of experiments demonstrates several things:

first, that Flexlab is able to handle a real, complex, dis-

tributed system that is of interest to researchers; second,

that PlanetLab host conditions can make an enormous im-

pact on the network performance of real applications; third,

that both Flexlab and PlanetLab with host CPU reservations

give similar and likely accurate results; and fourth, prelim-

inary results indicate that our simple static models of the

Internet don’t (yet) provide high-fidelity emulation.

BitTorrent (BT) is a popular peer-to-peer program for

cooperatively downloading large files. Peers act as both

clients and servers: once a peer has downloaded part of

a file, it serves that to other peers. We modified BT to

use a static tracker to remove some–but by no means all—

sources of non-determinism from repeated BT runs. Each

experiment consisted of a seeder and seven BT clients, each

located at a different site on Internet2 or GÉANT, the Eu-

ropean research network.1 We ran the experiments for 600

seconds, using a file that was large enough that no client

could finish downloading it in that period.

6.2.1 ACIM vs. PlanetLab

We began by running BT in a manner similar to the simulta-

neous iperf microbenchmark described in Sec. 6.1.2. We

ran two instances of BT simultaneously: one on Planet-

Lab and one using ACIM on Flexlab. These two sets of

clients did not communicate directly, but they did compete

for bandwidth on the same paths: the PlanetLab BT directly

sends traffic on the paths, while the Flexlab BT causes the

measurement agent to send traffic on those same paths.

Figure 8 shows the download rates of the BT clients,

with the PlanetLab clients in the top graph, and the Flexlab

clients in the bottom. Each line represents the download

rate of a single client, averaged over a moving window of

30 seconds. The PlanetLab clients were only able to sustain

an average download rate of 2.08 Mbps, whereas those on

Flexlab averaged triple that rate, 6.33 Mbps. The download

rates of the PlanetLab clients also clustered much more

tightly than in Flexlab. A series of runs showed that the

clustering was consistent behavior. Table 3 summarizes

those runs, and shows that the throughput differences were

also repeatable, but with Flexlab higher by a factor of 2.5

instead of 3.

1The sites were stanford.edu (10Mb), uoregon.edu (10Mb), cmu.edu

(5Mb), usf.edu, utep.edu, kscy.internet2.planet-lab.org, uni-klu.ac.at, and

tssg.org. The last two are on GÉANT; the rest on I2. Only the first three

had imposed bandwidth limits. All ran PlanetLab 3.3, which contained

a bug which enforced the BW limits even between I2 sites. We used the

official BT program v. 4.4.0, which is in Python. All BT runs occurred

in February 2007. 5 & 15 minute load averages for all nodes except the

seeder were typically 1.5 (range 0.5–5); the seed (Stanford) had a loa-

davg of 14–29, but runs with a less loaded seeder gave similar results.

Flexlab/Emulab hosts were all “pc3000”s: 3.0 Ghz Xeon, 2GB RAM,

10K RPM SCSI disk.
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Figure 8: A comparison of download rates of BT running simul-

taneously on PlanetLab (top) and Flexlab using ACIM (bottom).

The seven clients in the PlanetLab graph are tightly clustered.
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Figure 9: Download rates of BT simultaneously running on Plan-

etLab with Sirius (top), compared to Flexlab ACIM (bottom).

These results, combined with the accuracy of the mi-

crobenchmarks, suggest that BT’s throughput on PlanetLab

is constrained by host overload not found in Flexlab. Our

next experiment attempts to test this hypothesis.

6.2.2 ACIM vs. PlanetLab with Sirius

Sirius is a CPU and bandwidth reservation system for Plan-

etLab. It ensures that a sliver receives at least 25% of its

host’s CPU, but does not give priority access to other host

resources such as disk I/O or RAM. Normal Sirius also in-

cludes a bandwidth reservation feature, but to isolate the ef-
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Experiment Flexlab PlanetLab Ratio

No Sirius (6 runs) 5.78 (0.072) 2.27 (0.074) 2.55 (0.088)

Sirius (5 runs) 5.44 (0.29) 5.24 (0.34) 1.04 (0.045)

Table 3: Mean BT download rate in Mbps and std. dev. (in paren-

theses) of multiple Flexlab and PlanetLab runs, as in Sec. 6.2.

Since these were run at a different time, network conditions may

have changed.

fects of CPU sharing, we had PlanetLab operations disable

this feature in our Sirius slice. Currently, only one slice,

PlanetLab-wide, can have a Sirius reservation at a time. By

using Sirius, we reduce the potential for PlanetLab host ar-

tifacts and get a better sense of Flexlab’s accuracy.

We repeated the previous experiment fifteen minutes

later, with the sole difference that the PlanetLab BT used

Sirius. We ran BT on Flexlab at the same time; its mea-

surement agent on PlanetLab did not have the benefit of

Sirius. Figure 9 shows the download rates of these simulta-

neous runs. Sirius more than doubled the PlanetLab down-

load rate of our previous PlanetLab experiment, from 2.08

to 5.80 Mbps. This demonstrates that BT is highly sensi-

tive to CPU availability, and that the CPU typically avail-

able on PlanetLab is insufficient to produce accurate results

for some complex applications. It also highlights the need

for sufficient, reserved host resources on current and future

network testbeds. In this run, the Flexlab and PlanetLab

download rates are within 4% of each other, at 5.56 Mbps

and 5.80 Mbps, respectively. These results are consistent,

as shown by repeated experiments in Table 3. This indi-

cates that Flexlab with ACIM provides a good environment

for running experiments that need PlanetLab-like network

conditions without host artifacts.

Resource Use. To estimate the host resources consumed

by BT and the measurement agent we ran Flexlab with a

“fake PlanetLab” side that ran inside Emulab. The agent

took only 2.6% of the CPU, while BT took 37–76%, a fac-

tor of 14–28 higher. The agent’s resident memory use was

about 2.0MB, while BT used 8.4MB, a factor of 4 greater.

6.2.3 Simple Static Model

We ran BT again, this time using the simple-static model

outlined in Sec. 4.1. Network conditions were those col-

lected by Flexmon five minutes before running the BT ex-

periment in Sec. 6.2.1, so we would hope to see a mean

download rate similar to ACIM’s: 6.3 Mbps.2 We did three

runs using the “cloud,” “shared,” and “hybrid” Dummynet

configurations. We were surprised to find that the shared

2The 6.2.1 experiment differed from this one in that the former gen-

erated traffic on PlanetLab from two simultaneous BT’s, while this exper-

iment ran only one BT at a time. This unfortunate methodological differ-

ence could explain much of the difference between ACIM and the simple

cloud model, but only if the simultaneous BT’s in 6.2.1 significantly af-

fected each other. That seemed unlikely due to the high degree of stat

muxing we expect on I2 (and probably GÉANT) paths, both apriori and

from the results in Sec. 4.3. However, that assumption needs study.

configuration gave the best approximation of BT’s behav-

ior on PlanetLab. The cloud configuration resulted in very

high download rates (12.5 Mbps average), and the rates

showed virtually no variation over time. Because six of the

eight nodes used for our BT experiments are on I2, the hy-

brid configuration made little difference. The two GÉANT

nodes now had realistic (lower) download rates, but the

overall mean was still 10.7 Mbps. The shared configuration

produced download rates that varied on timescales similar

to those we have seen on PlanetLab and with ACIM. While

the mean download rate was more accurate than the other

configurations, it was 25% lower than that we would ex-

pect, at 5.1 Mbps.

This shows that the shared bottleneck models we devel-

oped for the simple models are not yet sophisticated enough

to provide high fidelity emulation. The cloud configuration

seems to under-estimate the effects of shared bottlenecks,

and the shared configuration seems to over-estimate them,

though to a lesser degree. Much more study is needed of

these models and PlanetLab’s network characteristics.

7 Related Work

Network measurement to understand and model network

behavior is a popular research area. There is an enor-

mous amount of related work on measuring and model-

ing Internet characteristics including bottleneck-link ca-

pacity, available bandwidth, packet delay and loss, topol-

ogy, and more recently, network anomalies. Examples in-

clude [7, 8, 30, 17, 29, 38]. In addition to their use for

evaluating protocols and applications, network measure-

ments and models are used for maintaining overlays [2]

and even for offering an “underlay” service [22]. Plan-

etLab has attracted many measurement studies specific to

it [31, 19, 40, 25]. Earlier, Zhang et al. [41] showed that

there is significant stationarity of Internet path properties,

but argued that this alone does not mean that the latency

characteristics important to a particular application can be

sufficiently modeled with a stationary model.

Monkey [6] collects live TCP traces near servers, to

faithfully replay client workload. It infers some network

characteristics. However, Monkey is tied to a web server

environment, and does not easily generalize to arbitrary

TCP applications. Jaisal et al. did passive inference of TCP

connection characteristics [15], but focused on other goals,

including distinguishing between TCP implementations.

Trace-Based Mobile Network Emulation [24] has sim-

ilarities to our work, in that it used traces from mobile

wireless devices to develop models to control a synthetic

networking environment. However, it emphasizes produc-

tion of a parameterized model, and was intended to col-

lect application-independent data for specific paths taken

by mobile wireless nodes. In contrast, we concentrate on

measuring ongoing Internet conditions, and our key model
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is application-centric.

Overlay Networks. Our ACIM approach can be viewed

as a highly unusual sort of overlay network. In contrast

to typical overlays designed to provide resilient or opti-

mized services, our goal is to provide realism—to expose

rather than mitigate the effects of the Internet. A signifi-

cant practical goal of our project is to provide an experi-

mentation platform for the development and evaluation of

“traditional” overlay networks and services. By providing

an environment that emulates real-world conditions, we en-

able the study of new overlay technologies designed to deal

with the challenges of production networks.

Although our aims differ from those of typical over-

lay networks, we share a common need for measurement.

Recent projects have explored the provision of common

measurement and other services to support overlay net-

works [21, 22, 16, 26]. These are exactly the types of mod-

els and measurement services that our new testbed is de-

signed to accept.

Finally, both VINI [4] and Flexlab claim “realism” and

“control” as primary goals, but their kinds of realism and

control are almost entirely different. The realism in VINI

is that it peers with real ISPs so it can potentially carry

real end-user traffic. The control in VINI is experimenter-

controlled routing, forwarding, and fault injection, and pro-

vision of some dedicated links. In contrast, the realism in

Flexlab is real, variable Internet conditions and dedicated

hosts. The control in Flexlab is over pluggable network

models, the entire hardware and software of the hosts, and

rich experiment control.

8 Conclusion

Flexlab is a new experimental environment that provides a

flexible combination of network model, realism, and con-

trol, and offers the potential for a friendly development and

debugging environment. Significant work remains before

Flexlab is a truly friendly environment, since it has to cope

with the vagaries of a wide-area and overloaded system,

PlanetLab. Challenging work also remains to extensively

validate and likely refine application-centric Internet mod-

eling, especially UDP.

Our results show that an end-to-end model, ACIM,

achieves high fidelity. In contrast, simple models that ex-

ploit only a small amount of topology information (com-

modity Internet vs. Internet2) seem insufficient to produce

an accurate emulation. That presents an opportunity to

apply current and future network tomography techniques.

When combined with data, models, and tools from the vi-

brant measurement and modeling community, we believe

Flexlab with new models, not just ACIM, will be of great

use to researchers in networking and distributed systems.
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A Scheduling Accuracy

To quantify the jitter and delay in process scheduling on

PlanetLab nodes, we implemented a test program that

schedules a sleep with the nanosleep() system call, and

measures the actual sleep time using gettimeofday().

We ran this test on three separate PlanetLab nodes with load

averages of roughly 6, 15, and 27, plus an unloaded Emu-

lab node running a PlanetLab-equivalent OS. 250,000 sleep

events were continuously performed on each node with a

target latency of 8 ms, for a total of about 40 minutes.

Figure 10 shows the CDF of the unexpected additional
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Figure 10: 90th percentile scheduling time difference CDF. The

vertical line is “Local Emulab.”

delay, up to the 90th percentile; Figure 11 displays the tail

in log-log format. 90% of the events are within -1–5 sched-

uler quanta (msecs) of the target time. However, a signifi-

cant tail extends to several hundred milliseconds. We also

ran a one week survey of 330 nodes that showed the above

samples to be representative.

This scheduling tail poses problems for the fidelity of

programs that are time-sensitive. Many programs may still

be able to obtain accurate results, but it is difficult to deter-

mine in advance which those are.

Spring et al. [31] also studied availability of CPU on

PlanetLab, but measured it in aggregate instead of our

timeliness-oriented measurement. That difference caused

them to conclude that “PlanetLab has sufficient CPU ca-

pacity.” They did document significant scheduling jitter in

packet sends, but were concerned only with its impact on

network measurment techniques. Our BT results strongly

suggest that PlanetLab scheduling latency can greatly im-

pact normal applications.
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Figure 11: Log-log scale scheduling time difference CDF show-

ing distribution tail. The “Local Emulab” line is vertical at x = 0.
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