Chapter 2

Background and Motivation

In this chapter, we provide background information on malicious code. In particular, we
present a brief summary of the history of malicious code and answer the question why
malware is so prevalent on today’s Internet. We also introduce a taxonomy of malware
and explain in more detail the characteristics of different incarnations of malicious code.
We then discuss previous attempts to fight malware, and in particular, related research
that is relevant to the work presented in the thesis. This discussion outlines shortcomings
of current malware detection techniques and motivates our search for better and more
robust ways to detect malicious code.

2.1 Short History of Malware

The last few years have seen a tremendous increase of malicious code attacks. However,
malware is not a new concept and miscreants have been producing evil programs for well
over two decades. Figure 2.1 shows a timeline with significant events in the history of
malware development. When looking at this timeline in more detail, a number of trends
can be observed.

One trend is the increase in sophistication. A virus twenty years ago was a small code
fragment that infected executable files and spread via disks that were exchanged between
computer users. Current tools are very crafty in their rapid infection and stealth techniques.
For example, malware often uses different infection vectors to spread. That is, it is not
uncommon that a virus or a worm exploits multiple vulnerabilities in different network
services and, additionally, relies on social engineering by sending copies of itself by email,
hoping for careless users to click on the attachment. In addition, modern malware often
manipulates the operating system kernel to hide its presence and can contain functionality
to attack host-based defense systems (e.g., some viruses shut down running anti-virus
programs).

anglyzing the

Nimda lSQL
Spyware l Slammer
s Melissa l
2 Virus || Code Red
2] DDoS
2 (Trinoo)
a and
o
(%)) l . Kernel-level
o First Rootkits
S Macro Virus
2 First Polymorphic
3 Virus
2 First Virus
g for PC | |
= First Virus (Brain) Morris Worm
in the
wild
(Apple Il)l
Fred Cohen
‘ defines Virus
||||||||||||||||||||||||||=
1981 1986 1991 1996 2001 2006

Figure 2.1: 20 years of malicious code.

Another trend is the acceleration of the development of novel techniques. While it took
years between significant advances in malware technology in the past, the last few years
have seen the emerging of new variations of malicious code at a rapid pace. Many major
security threats on the Internet today, such as email viruses, worm epidemics, distributed
denial-of-service and botnet tools, spyware, and sophisticated kernel-level rootkits are all
a development of the last five years.

The following description of major milestones in malware development are based on
the history of malicious code described in [53]:

1981 First Reported Computer Virus: At least three separate viruses were discovered
in games for the Apple II computer system, although the word virus was not yet
applied to this malicious code.

1983 Formal Definition of Computer Virus: Fred Cohen [11] defined a computer
virus as “a program that can infect other programs by modifying them to include a,
possibly evolved, version of itself.”

1983 First Virus for Personal Computer: The appearance of Brain, the first virus for
the IBM personal computer, was an important harbinger of malicious code to come,
as the popular DOS and later Windows operating systems would become a primary
target for viruses and worms.

1988

1990

1995

1999

1999

1999

2000

2001

Morris Internet Worm: Robert Morris released the world’s first worm, disabling
much of the early Internet.

First Polymorphic Virus: To evade anti-virus systems, polymorphic viruses al-
tered their own appearance every time they infected a new file, opening up the frontier
of polymorphic (and metamorphic) code that is still being explored in research today.

First Macro Virus: Viruses developed until this time were thought of as executable
code sequences that infect binary programs. The first macro viruses changed this
notion, as they were implemented in the Microsoft Word macro language and infected
document files. These techniques soon spread to other macro languages in other
programs and broadened the view of malware in general.

Melissa Virus: This virus was one of the first to use mail as a means to achieve
wide distribution. Written as a macro virus, it also bore characteristics of a worm as
it used the network (in this case, the email system) to spread.

Distributed Denial-of-Service (DDoS): In late summer of this year, the Tribe
Flood Network (TEFN) and Trin00 denial of service agents were released. These
tools offered an attacker control of hundreds, or even thousands of machines with an
installed zombie via a single client machine. With a centralized point of coordination,
these distributed agents (often called botnets) could launch devastating denial-of-
service attacks or serve as email relays for unsolicited bulk mail (spam).

Kernel-level Rootkits: Rootkits are a collection of tools used by an attacker after
gaining administrative privileges on a host. Typically, these tools were modified
versions of common system administrator tools with the goal of hiding the attacker’s
presence on the compromised machine. With Knark, the first rootkit was released
that was modifying the Linux operating system kernel directly. This allowed an
attacker to effectively hide files, processes, and network activity without requiring
any modifications to user programs anymore.

Spyware: A novel type of software was identified that did not immediately pose
a security threat to infected users, but compromised their privacy. This malware
variant is monitoring user behavior (e.g., collecting browser habits) and transmitting
the gathered information to a third party where it is typically used for market research
or targeted advertising purposes. Besides the collection of data, spyware is also often
used to display ads directly on the infected machine.

Code Red Worm: Code Red was one of the first worms that exploited a vulnera-
bility in a popular network service to spread (a buffer overflow in Microsoft’s Internet

Information Service web server). It was very successful, and over 250,000 machines
fell victim in less than eight hours.

2001 Nimda Worm: The Nimda worm is an example of the new generation of worms that
make use of numerous methods for spreading, including Web server buffer overflows,
Web browser exploits, Outlook e-mail attacks, and file sharing.

2003 SQL Slammer Worm: The SQL Slammer worm is remarkable for its spreading
efficiency and small size. The body of the worm fits into a single UDP packet, and
the scan engine is fast enough to probe for victims at network speed. This enabled
the Slammer worm to infect more than 90% of the vulnerable host population on the
Internet is less than eight minutes.

An interesting question to ask is for the reasons why malicious code has become such
a prevalent phenomenon in today’s networked world. It is true that viruses have always
been a nuisance to computer users. However, people had little exposure to malware ten
years ago and anti-virus software was run only by a few, cautious users. Currently, almost
everybody uses multiple security products such as virus scanners or personal firewalls, and
it is a matter of minutes until a freshly installed Windows machine that is connected to
the Internet gets compromised by one of the many worms that roam the net.

One major reason, according to [31], is the enormous increase in network connectivity.
With the growth of the Internet, both the number of attack vectors and the ease with which
an attack can be made increased. More and more computers are connected to the global
network, and people, businesses, and governments increasingly rely upon communication
such as e-mail or Web pages. As all these systems are connected to the Internet, they
become vulnerable to attacks from distant sources. In particular, it is no longer necessary
for an attacker to obtain physical access to a system to install or propagate malicious code.
This lowers the barrier, as one can simply attack systems from the comfort of one’s living
room. In addition, attacks can be automated and a single person can comprise hundreds,
or even thousands, of machines within seconds. This lead to the emerge of denial-of-
service attacks where a botnet comprised of a large number of previously compromised
hosts simultaneously flooded a victim site.

A second problem is the increasing size and complexity of modern information systems.
A desktop system running Windows and associated applications depends upon the proper
functioning of the kernel as well as the applications to ensure that malicious code cannot
corrupt the system. However, Windows itself is a complex monolith that consists of tens
of millions of lines of source code, and applications are becoming equally large. When
systems become this large, bugs cannot be avoided. This problem is exacerbated by the
use of unsafe programming languages (such as C or C++) that do not protect against
simple memory corruption attacks (such as buffer overflows). Unfortunately, even if the

10

systems were bug free, improper configuration can open the door to malicious code. In
addition to providing more avenues for attack, complex systems make it easier to hide or
mask malicious code. In theory, one could analyze and prove that a small program was
free of malicious code, but this task is impossible for real-world systems.

A third problem is the degree to which systems have become extensible. On one hand,
this problem refers to the fact that the operating system or applications can be dynamically
enhanced with new functionality. For example, some operating systems support extensibil-
ity through dynamically-loadable device drivers and modules, while a web browser can be
extended by a new plug-in. This lead to the emerge of malicious code such as kernel-level
rootkits that install themselves as operating system modules, or malware that exploits se-
curity vulnerabilities in the ActiveX extension system of Microsoft Internet Explorer. On
the other hand, extensibility refers to the possibility to embed code snippets or macros into
data objects. Word documents support a simple macro language to automate repetitive
tasks and JavaScript can be embedded into web pages to improve their presentation or ease
navigation. Extensible systems are attractive because they provide flexible interfaces that
can be adapted through new components. Unfortunately, it is hard to prevent malicious
code from slipping in as an unwanted extension. This is demonstrated by attacks such as
cross-site scripting (XSS), where malicious JavaScript is injected into web pages, or Word
macro viruses. An example for problems due to extensible systems, the Melissa virus took
advantage of the scripting extensions of Microsoft’s Outlook e-mail client to propagate it-
self. The virus was coded as a script contained in what appeared to users as an innocuous
mail message. When the message was opened, the script was executed, and proceeded to
obtain email addresses from the user’s contacts list before sending copies of itself to those
addresses.

2.2 DMalware Taxonomy

Malicious code is a rich and diverse field, and a number of different approaches to classify
malware exist. In this thesis, we propose a taxonomy of malware that focuses on two
important properties: (1) the ability of a piece of code to spread autonomously, and (2)
its ability to run independent of a host program.

Of course, our taxonomy provides only a coarse guideline to classify malware. In partic-
ular, we do not distinguish between the different mechanisms that can be used to spread.
Some taxonomies [31] introduce a fine-grain distinction between malware that spreads by
exploiting vulnerabilities in remote services, programs that send copies of themselves by
email, or virus code that is spread via infected files exchanged by file sharing or on remov-
able media such as floppy disks. In our case, we are only interested in the mere fact that
a piece of malware is capable of autonomously creating copies of itself.

11

Another area that we do not consider for our taxonomy is the mode of operation of mali-
cious code, or, in other words, the damage that it is supposed to inflict. Unfortunately, the
purpose of malicious code is only limited by the imagination of the miscreant who created
it, and many malware programs implement routines to cause damage in different ways.
Sometimes, malicious code even spreads without effecting its host in a negative fashion.
More often, however, programs or data on infected computer systems are destroyed. Other
functionality includes the installation of a backdoor to allow an intruder easy access at
later times, the flooding of a victim host with useless traffic to carry out a denial-of-service
attack, or the installation of a simple mail server to distribute spam messages.

Our simple taxonomy, including examples for each class, can be found in Figure 2.2.
The malware instances introduced in this figure are discussed in more detail below.

{o)]
[
<
o
5 o3 Computer Virus Computer Worm
2 v
5 o
82 o
E o
0
a
S
g 2 Trojan Horse Keylogger
o 8
= 9
& Spyware
& Rootkit
2 Dialers
Requires Host Runs Independently

Dependency on Host

Figure 2.2: Taxonomy of malicious code.

Computer Virus: As mentioned previously, the first definition [11] of a computer virus
was given by Fred Cohen in 1984. He classified a virus as “a program that can infect
other programs by modifying them to include a, possibly evolved, version of itself.” This
definition characterizes a virus as a program that spreads and that requires a host program
where it can include a copy of itself. Interestingly, the definition already alluded to the
possibility of code evolution. While it is common nowadays that viruses make use of
polymorphic or metamorphic techniques to alter their appearance in order to evade pattern-
(or signature-)based detection, this concept was not yet introduced at the time Cohen made
his statement. The aforementioned definition is still accepted today, although it had to
be modified slightly to take into account viruses that do not directly modify their host
programs. Instead, so called companion viruses alter the program’s environment and place

12

themselves in front of the victim’s program on the execution path, of course using the same
name as the victim application. By doing so, the operating system always starts the virus
program instead of the actual application when attempting to launch the program. Thus,
an updated definition of a virus is given by Peter Szor [58] as “a program that recursively
and explicitly copies a possibly evolved version of itself.”

Computer Worm: A computer worm is closely related to a computer virus, as both
types of malware have the ability to spread autonomously. The main difference between
both types is the fact that a worm is a stand-alone application while a virus requires a
host program that it can infect. Also, although not strictly necessary, computer worms
typically spread via the network. This is either done by exploiting a vulnerability in a
network service or by sending copies of the worm as email attachments. In both cases,
whenever a worm successfully compromises a host, it starts to actively search for new
victims. This can be done by scanning the network for the occurrence of remote hosts that
expose a vulnerable service or by scanning the local machine for email addresses.

Trojan Horse: A Trojan horse is a computer program that is hidden inside another
program that serves a useful purpose. For example, a program that appears to be a game
or image file but in reality performs some other malicious function would be classified as a
Trojan horse. The term Trojan horse comes from the mythical deceit of war used by the
Greeks against Troy. According to our taxonomy, Trojan horses are classified as malware
that requires a host because they are embedded into another application that performs
something useful. In contrast to computer viruses and worms, Trojan horses do not spread
by themselves. Instead, they must be installed explicitly on a machine by an attacker.

A widespread type of Trojan horse are rootkits. Rootkits are code introduced into
system administration tools with the purpose of hiding the presence of an attacker on the
system. This is typically realized by suppressing that part of the output of these programs
that would reveal information about the intruder’s processes, files, or network connections.
The most insidious type of rootkits are kernel-level rootkits. This instance of malicious
code is implemented as modules that integrate themselves into the operating system. That
is, kernel-level rootkits are Trojan horses that use the operating system as host.

Spyware: Spyware is a term used for programs that monitor the behavior of users and
steal private information, such as keystrokes or browsing patterns. This is different from
other types of malware, such as viruses and worms, which typically aim to cause damage
or to spread to other systems as quickly as possible. Spyware is malware that is typically
realized as stand-alone applications that must be installed on victim’s machine. Interest-
ingly, spyware often comes bundled with free software that explicitly states that spyware
is installed on a user’s machine. However, this information is hidden in end-user license

13

agreements that are frequently dozens or even hundreds of pages long. Thus, a spyware
producer can be almost certain that nobody reads these license agreements and simply
agrees to have the malware installed.

The information collected by a spyware program is sent back to the spyware distributors
and used as a basis for targeted advertisement (e.g., pop-up ads) or marketing analysis.
Spyware programs can also “hijack” a user’s browser and direct the unsuspecting user to
web sites of the spyware’s choosing. Finally, in addition to the violation of users’ privacy,
spyware programs are also responsible for the degradation of system performance because
they are often poorly coded.

A key-logger is a common incarnation of spyware that focuses on the recording of the
keys that a user types. Other common spyware instances are modules for the Internet
Explorer web browser, where they have an excellent vantage point for observing a user’s
browsing behavior.

Dialer: A dialer is a computer program which creates a connection to the Internet or
another computer network over the analog telephone or ISDN network. The concept is
to make money for the people that develop the dialer by having the victims connect to
the Internet via premium-phone numbers (which are, of course, controlled by those that
distribute the dialer malware). While still in use today, the increasing availability of
broadband Internet and the concurrent decrease of people that use dial-up connections
reduces the number of possible victims and thus, limits dialer fraud.

2.3 Malicious Code Evolution

Malicious code is constantly evolving as malware authors aim to evade the state-of-the-art
detection engines and virus scanners. In this section, we shed light on the evolution of
malicious code and attempts of the anti-virus industry to keep up in the arms race against
malware authors.

The first malware instances were simple viruses that appended their invariant body
to each file that was infected and redirected the program entry point to the start of the
virus routine. To detect such viruses, first-generation scanners were equipped with a set
of byte-level signatures that exactly describe a characteristic part of each known piece of
malicious code. As a way to counter detection schemes based on exact byte signatures,
viruses made soon use of encryption to hide the actual virus body. That is, the actual
virus body was decrypted and prepended by a decryption routine. Some viruses were even
shipped with a number of different decryptors to make their identification more difficult.
Of course, virus writers quickly realized that the detection of their creations remains trivial
when the decryption routine does not change between different virus generations.

14

In an attempt to obfuscate the presence of a decryption routine, simple metamorphic
techniques were introduced. These techniques were not aimed at morphing the malicious
code per se, but to generate as many variations of the decryption loop as possible. The
first virus that used a mechanism called dead code insertion to camouflage the decryption
routine was named 1260. For this virus, the author created a skeleton of fixed instructions
that were necessary for the correct functionality of the decryptor. In between these code
islands, the virus would randomly insert junk different instructions every time it infects a
new file. These junk instructions were selected from a list of operations that were known
not to interfere with the actual decryption functionality. An example of such an operation
was the x86 nop instructions, which literally performs no operation and keeps the state
of the process untouched. Other instructions were arithmetic operations that performed
useless calculations on registers that were not used by the virus code. The purpose of
mixing random junk instruction with actual code was to change the layout of the virus in
every generation so that no signature would match more than a few instances of a virus.

Other approaches to force different code layouts were quickly developed. One such
technique, called register reassignment, makes use of the fact that a processor possesses a
number of general purpose registers that can be used interchangeably for computations.
Similar to a compiler back-end during code generation, a virus that employs register reas-
signment selects a certain register for a sequence of interrelated instructions that perform
a particular calculation. In each virus generation, a different register can be chosen. Se-
lecting a different register for an operation causes a slight change in the encoding of the
corresponding instruction. This leads to changes in the code layout that can evade precise
signatures. However, signatures that employ wildcards can still be used to detect such
worms. A detection engine supports wildcards when it is not necessary to precisely specify
the exact value of consecutive bytes in a signature. Instead, it is possible to leave certain
bytes in a sequence undefined. As an example, consider Figure 2.3 that shows the disas-
sembly and code layout of two different generations of the W95/Regswap virus, discovered
in 1998. It can be seen that most of the code (shown in bold face) remains unchanged.
Thus, a signature that specifies a sequence of bytes with a few unspecified locations in
between can still be written to characterize this virus.

Yet another method to morph the syntactic code layout of malware is called code
transposition. A virus that uses code transposition in its simplest form has a decryption
routine that is divided into a number of modules, or subroutines. Each module itself does
not change between different virus generations, but their order can be rearranged. This
allows a virus to generate n! different instances of itself, where n is the number of modules.
Typically, modules execute in the same order in each virus generation. To this end, the
last instruction of each module is an unconditional jumps to the next one in the sequences.
Of course, when modules are shuffled, the targets of these jumps need to be updated to
reflect the changed order. One of the first viruses that used code transposition on the

15

5A

pop %edx
2;83000000 mov %$edi, $0x04
3800000000 [0V 127 S0ub
¢ add %edx, $0x88
8Bl1A mov %ebx, (%$edx)
899C8618110000

mov 0x1118(%esi, %eax,4),%ebx

(a) First virus generation

58 pop %eax

BB04000000 mov %ebi, $0x04

8BD5 mov %edx, $ebp

BF0OC000000 mov %$edi, $0x00

81C088000000 add %eax, $0x88

8B30 mov %esi, (%eax)
89B4BA18110000 mov 0x1118(%edx, %$edi, 4), %ebx

(b) Second virus generation

Figure 2.3: Two generations of W95/Regswap.

level of modules was BadBoy, a DOS virus with eight different subroutines that could be
rearranged for a total of about 40,000 different variants. A more sophisticated version
of code transposition does not move complete blocks but individual instructions. To this
end, the virus author defines independent instructions that can be executed in an arbitrary
order relative to each other.

Finally, some viruses make use of command substitution. For tasks such as setting
the content of a register to zero, the rich Intel x86 instruction set provides a number
of semantically equivalent instructions (e.g., using xor %reg,%reg or sub %reg,’reg).
Typically, command substitution is implemented with the help of command tables that
hold different code sequences for a particular operation. Whenever the virus creates a
new instance of itself, it consults this table to randomly select one of the appropriate
code sequences for each tasks that it needs to perform. Because different (but semantically
equivalent) sequences are chosen in different generations, two virus samples have a different
layout with a high probability (of course, it might happen by accident that two virus
instances are assembled from the same code sequences, but the likelihood for this to occur
is low).

Malicious code that uses an encrypted body with a metamorphic decryption engine
constitutes a massive problem for first-generation malware detectors. The reason is that
such malware appears different in every generation and there is no longer a byte signature
that can be used to match the malicious code. The reaction of the anti-virus vendors
was the development of second-generation scanners. These scanners exploit the fact that
no matter how complicated and involved the decryption routine is, the virus body is still
invariant after is has been decrypted. To decrypt a virus, the advanced scanners make use
of code emulation. More precisely, these scanners contain a simple virtual processor that

16

can execute a program in a protected sandbox. When the virus is executed, its decryption
routine makes sure that the actual virus body is unpacked. At this point, the scanner can
again make use of simple signatures. As mentioned previously, the reason is that after
the execution of a complex decryption routine, the actual virus body that is dynamically
decrypted in memory remains fixed for (and unique to) a certain malware sample.

Given the power of metamorphic code transformations, it is obvious that these tech-
niques are not limited to their application to the decryption routine. Indeed, it would be
much better from the point of view of a malware author if the complete virus is metamor-
phic. That is, there is no encryption used anymore, as the body of the virus itself has in
a different layout in every generation. This also has the advantage that second-generation
scanners fail, because there is no decryption process and no invariant virus body that can
be detected. Although a complete metamorphic virus is appealing to a malware author, the
technical difficulty in writing a proper functioning piece of metamorphic code has so far de-
terred most developers. Nevertheless, a few such viruses were spotted in the wild. Among
the most infamous ones are W95/Zmist and W95/Smile. In addition to strong metamorphic
features, using all the techniques outlined above, each virus exhibits a special feature that
makes it unique.

W95/Zmist [58] supports code integration. This means that the virus does not simply
append a copy of itself to a file, but instead moves instructions of the original application
to make room for the virus code. In other words, the virus body is merged with the
application code. To make room for the virus’ new instructions, the existing code section
is expanded and existing instructions are shifted. This has an important consequence:
Instructions that are targets of jump or call operations are relocated. As a result, the
operands of the corresponding jump and call instructions need to be updated to point
to these new addresses. Note that this also effects relative jumps, which do not specify
a complete target address, but only an offset relative to the current address. In some
cases, relocating the target instruction even moves this instruction out of the range of
a short jump. If this happens, the short jump has to be converted into an appropriate
long jump. To perform the tasks outlined above, the host application has to be accurately
disassembled. This is not an easy task, especially when targeting x86 binaries on Microsoft
Windows. The reasons are the variable instruction length of the Intel x86 processor and
the fact that code and data are mixed in the code section. Despite these difficulties, the
virus is typically successful and most infected applications still run after they have been
modified by W95/Zmist.

W95/Smile [58] in interesting because it uses a processor-independent, intermediate
code to generate its metamorphic variants. More precisely, when the virus spreads, it first
translates the viral code into an intermediate language that is independent of the actual
CPU the virus runs on. Then, metamorphic obfuscation transformations are applied to this
intermediate virus representation. Finally, the code is compiled back into the native form.

17

This process demonstrates that the virus in fact contains a simple binary transformation
engine. The use of an intermediate code representation would also allow the virus to infect
programs that are written for a different platform than x86, although such a behavior has
not been observed yet.

Even when employing code emulation, second-generation scanners cannot use their
standard approach to detect metamorphic worms such as W95/Zmist or W95/Smile. To
provide some level of protection against such malware, scanners resort to “algorithmic
detection schemes.” In practice, algorithmic detection is just an euphemistic term for
heuristics that are developed by anti-virus vendors to detect a particular instance of mal-
ware. For example, a virus often tags an executable by writing a special character to a
particular location in the executable header or into the code segment. These tags are used
to identify previously infected files to prevent the virus from infecting the same program
multiple times. A scanner can then check for the presence of such tags to find infected
files. Other heuristics recognize executables that have unusual code sections or unusual
header entries. Yet others check for suspicious hard-coded addresses that are utilized by
a virus. Unfortunately, algorithmic detection schemes can be easily evaded by a malware
author, thus making frequent updates to the virus database necessary whenever a new
variant of a previously unknown piece of malicious code is detected in the wild. As put by
Peter Szor [58], chief malware analyst at Symantec: “Heuristic systems can only reduce
the problem against masses of viruses. The evolution of metamorphic viruses is one of the
greatest challenges of this decade.”

2.4 Previous Research

The first academic papers to deal with the problem of malicious code were presented by
Christodorescu et al. [5, 6]. In these papers, the authors demonstrated the ease of evading
state-of-the-art commercial virus scanners. In their experiments, all systems failed to detect
a mutated virus after applying syntactic transformations to the virus body (e.g., reordering
instructions, renaming registers). This is not surprising, though, as the anti-virus products
simply did not have suitable signatures to characterize the virus instances that resulted
from the code transformations. In fact, these results mostly confirm that commercial
scanners cannot detect novel virus variants because they use malware descriptions that are
very specific to particular virus instances. In [5], the authors also present a static analysis
approach that can be used to revert certain code transformations. That is, the authors
presented a tool, which is based on model checking, that recognizes that a code sequence
is identical to a given virus specification, even when this code sequence was modified by
code reordering, register reassignment, or junk insertion. The system still lacks the ability
to detect novel malware instances, however, because a precise specification is necessary to

18

characterize a virus. Nevertheless, the approach offers the benefit that the tool cannot be
confused by simple code transformations.

The first paper that argues for more a general description of malware was presented
by the author of this thesis in [26]. The key idea presented in this paper, and also the
insight which constitutes the base of the thesis, is the fact that it should be possible to
describe the behavior of malware on a higher level of abstraction, at least for certain classes
of malicious code. That is, instead of providing one specific description for each different
piece of malware, it would be desirable to classify a whole class of malicious code by the
behavior it exhibits.

In [26], we focused on the static detection of kernel-level rootkits. To distinguish the
behavior of rootkits from legitimate operating system modules, we defined malicious be-
havior as write accesses to forbidden regions in the kernel address space. This provided us,
independent of the actual implementation of the kernel rootkit, with a high-level, behav-
ioral specification that has the power to capture the characteristics of all kernel rootkits.
This has two important implications. First, our analysis is immune to transformations that
merely modify the syntactic appearance of the malware. Because metamorphic transfor-
mations do not alter the semantics of the code, our detection approach is robust to such
obfuscation attempts. The second implication is that our system has the power to detect
previously unknown malware instances. Because we specify a behavior that is characteris-
tic for a whole class of malware, all representatives that exhibit this behavior are classified
as unwanted. Indeed, our results demonstrated that we were able to detect previously
unknown rootkits with no false alarms.

The idea of behavioral characterization of malicious code was later adopted in [7]
and [22]. In [7], the authors focus on the decryption loop to capture the general behavior
of polymorphic viruses. The authors state that such malware can be described by a behav-
ioral specification that defines “(1) a loop that processes data from a source memory area
and writes data to a destination memory area, and (2) a jump that targets the destination
area.” The authors further introduce a number of sophisticated static analysis techniques
that they employ to search for suspicious behavior in binaries. In [22], the authors focus on
the spreading mechanism of worms. In particular, the authors classify a program as virus
when it creates a copy of itself. To this end, model checking is used to analyze a program’s
control flow graph for the occurrence of suspicious code sequence. Such a suspicious code
sequence is defined as a call to the GetModuleFileNameA Windows API function, followed
by an invocation of the CopyFileA function. Of course, the specification requires that
the return value of GetModuleFileNameA, which yields the programs name, is used as a
parameter to the CopyFileA routine.

All approaches described so far use static analysis techniques to locate suspicious code
sequences in binary executables. This technique requires that the malware detector can
obtain an accurate disassembly of the program under analysis. In [29], Linn and Debray

19

introduced novel obfuscation techniques that exploit the fact that the Intel x86 instruction
set architecture contains variable length instructions that can start at arbitrary memory
address. By inserting padding bytes at locations that cannot be reached during run-time,
disassemblers can be confused to misinterpret large parts of the binary. To address this
problem, we presented a robust disassembler approach in [27].

Besides static techniques, dynamic analysis techniques play an important role both in
the manual and automatic analysis of malicious code. Previously, we have already pointed
out that second-generation virus scanners make use of code emulation techniques to bypass
the obfuscated decryption routines of polymorphic malware. A problem is that malicious
code is often equipped with detection routines that check for the presence of a virtual
machine or a simulated OS environment [46, 48]. When such an environment is detected,
the malware modifies its behavior and the analysis delivers incorrect results. Malware
also checks for software (and even hardware) breakpoints to detect if the program is run
in a debugger [59]. This requires that a dynamic analysis environment is invisible to the
malware that is executed.

We have developed a dynamic analysis engine that runs malicious code in an emu-
lated operating system environment while monitoring its (security-relevant) actions. In
particular, we record the Windows native system calls and Windows API functions that
the program invokes. One important feature of our system is that it does not modify
the program that it executes (e.g., through API call hooking or breakpoints), making it
more difficult to detect by malicious code. Also, our tool runs binaries in an unmodified
Windows environment, which leads to excellent emulation accuracy. Interestingly, a sys-
tem with quite similar features and design has been concurrently developed and will be
presented in [60].

2.5 Summary

In this chapter, we provided a brief summary of the history of malicious code and in-
troduced major classes of malware. We also outlined the evolution of malicious code, in
particular various metamorphic techniques used by malware authors to evade detection by
commercial virus scanners. We also pointed out the two main limitations of current systems
for malicious code detection, namely their inability to identify previously unseen malware
and their sensitivity to code obfuscation. Finally, we suggested to solve the aforementioned
problems by characterizing malware at a higher level of abstraction, using behavioral and
structural signatures. The details of this solution and its application to the detection of
kernel-rootkits and spyware form the core of the following chapter.

20

