Overview

- Administrative stuff
- Class motivation
- Syllabus
- Working with different bases
- Bitwise operations
- Twos complement
Administrative Stuff
About Me

• 5th year Ph.D. candidate, doing programming languages research (automated testing)

• **Not** a professor; just call me Kyle

• Fourth time teaching; first time teaching CS64
About this Class

• See something wrong? Want something improved? Email me about it! (kyledewey@cs.ucsb.edu)
• I generally operate based on feedback
Bad Feedback

- This guy sucks.
- This class is boring.
- This material is useless.

-I can’t do anything in response to this
Good Feedback

• This guy sucks, *I can’t read his writing.*
• This class is boring, *it’s way too slow.*
• This material is useless, *I don’t see how it relates to anything in reality.*

• I can’t fix anything if I don’t know what’s wrong

–I can actually do something about this!
Questions

• Which best describes you?
 • CS major
 • ECE major
 • Other
Office Hours
Placement
Class Motivation
int main(int argc, char** argv) {
 ...
}

-I just want to write my code
int main(int argc, char** argv) {
 ...
}

- Have some magic happen
int main(int argc, char** argv) {
 ...
}

3.14956

-And then get a result
int main(int argc, char** argv) {
 ...
}

3.14956

-But what if your magic isn’t working fast enough?
int main(int argc, char** argv) {
 ...
}

More Efficient Algorithms

3.14956

Let’s apply some better algorithms, improve time complexity, and so on...
int main(int argc, char** argv) {
 ...
}

More Efficient Algorithms

You Mad Bro?

3.14956

 ...and we’re left with a slightly faster turtle
Why are things still slow?
The magic box isn’t so magic
Array Access

arr[x]

• Constant time! (O(1))

• Where the **random** in random access memory comes from!
Array Access

- Constant time! (O(1))
- Where the random in random access memory comes from!

arr[x]

Array Access

- Memory is loaded as chunks into caches
 - Cache access is much faster (e.g., 10x)
 - Iterating through an array is fast
 - Jumping around any which way is slow
- Can change time complexity if accounted for
 - $O(N^3)$ versus $\sim O(N^4)$

Matrix multiply is the example at the end. If you take the graduate-level parallel programming course, you’ll watch a matrix multiply program seemingly nonsensically get around 5–6X faster by using a memory layout which looks asinine, but processors love
Instruction Ordering

- Two code snippets that appear to do the exact same thing
- Both should take the same amount of time, right?
Instruction Ordering

Two code snippets that appear to do the exact same thing
- Both should take the same amount of time, right?
Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

3 Milliseconds?

NOPE

3 Milliseconds?

Instruction Ordering

• Modern processors are *pipelined*, and can execute sub-portions of instructions in parallel
 • Depends on when instructions are encountered

• Some can execute whole instructions in different orders

• If your processor is from Intel, it is insane.
The Point

• If you really want performance, you need to know how the magic works
 • “But it scales!” - empirically, probably not
 • Chrome is fast for a reason

• If you want to write a naive compiler (CS160), you need to know some low-level details

• If you want to write a fast compiler, you need to know tons of low-level details

-A bunch of Chrome is written using low-level machine instructions (assembly)
-Ruby on Rails is horrendously slow, and is built on the idea of scaling up. A startup I know of beat a 50 node Rails cluster using one machine. Even in more typical settings, typically it’s something like 10 Rails nodes to one optimized node. Twitter used to run Rails, but found that it was too slow to handle the sort of scale that it handles now.
So Why Digital Design?

–It’s to turn this
So Why Digital Design?

Instruction Fetch | Instruction Decode | Execute Address Calc. | Memory Access | Write Back
IF | ID | EX | MEM | WB

- ...into this
So Why Digital Design?

• Basically, circuits are the programming language of hardware
 • Yes, everything goes back to physics
Syllabus
Working with Different Bases
What’s In a Number?

• Question: why exactly does 123 have the value 123? As in, what does it mean?

- Not a philosophy question
- This is actually kind of brain-melting, but once this is understood everything else becomes second-nature
What’s In a Number?

123

–Start with 123
What’s In a Number?

| 1 | 2 | 3 |

- Break it down into its separate digits
What’s In a Number?

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

-Values of each digit
What's In a Number?

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Values of each digit
Question

- Why did we go to tens? Hundreds?

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Answer

- Because we are in decimal (base 10)

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
| 100 | 10 | 1 | 1 | 1
Another View

123
Another View

| 1 | 2 | 3 |

- Break it down into its separate digits
Another View

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^2</td>
<td>2×10^1</td>
<td>3×10^0</td>
</tr>
</tbody>
</table>

- Values of each digit
Conversion from Some Base to Decimal

- Involves repeated division by the value of the base
 - From right to left: list the remainders
 - Continue until 0 is reached
 - Final value is result of reading remainders from bottom to top
- For example: what is 231 decimal to decimal?
Conversion from Some Base to Decimal

231
Conversion from Some Base to Decimal

\[
\begin{array}{c|c}
10 \overline{231} & \text{Remainder} \\
23 & 1 \\
\end{array}
\]
Conversion from Some Base to Decimal

\[
\begin{array}{c|c}
10 & 231 \\
10 & 23 \\
10 & 2 \\
\hline \\
\end{array}
\]

Remainder

1

3
Conversion from Some Base to Decimal

<table>
<thead>
<tr>
<th>Division</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>23</td>
</tr>
<tr>
<td>$10</td>
<td>23</td>
</tr>
<tr>
<td>$10</td>
<td>2</td>
</tr>
</tbody>
</table>

-Final value: 231 (reading remainders from bottom to top)
Now for Binary

- Binary is base 2
- Useful because circuits are either on or off, representable as two states, 0 and 1
Now for Binary

1010
Now for Binary

| 1 | 0 | 1 | 0 |
Now for Binary

<table>
<thead>
<tr>
<th>Eights</th>
<th>Fours</th>
<th>Twos</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Now for Binary

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eights</td>
<td>Fours</td>
<td>Twos</td>
<td>Ones</td>
</tr>
<tr>
<td>1×2^3</td>
<td>0×2^2</td>
<td>1×2^1</td>
<td>0×2^0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Question

• What is binary 0101 as a decimal number?
Answer

- What is binary 0101 as a decimal number?
- 5

<table>
<thead>
<tr>
<th></th>
<th>Eights</th>
<th>Fours</th>
<th>Twos</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 x 2^3</td>
<td>1 x 2^2</td>
<td>0 x 2^1</td>
<td>1 x 2^0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
From Decimal to Binary

- What is decimal 57 to binary?
From Decimal to Binary
From Decimal to Binary

\[\begin{array}{c|c}
2 & 57 \\
\hline
28 & 1 \\
\end{array} \]

Remainder
From Decimal to Binary

\[
\begin{array}{c|c}
2 & 57 \\
2 & 28 \\
& 14 \\
\hline
1 & 0 \end{array}
\]
From Decimal to Binary

```
  2 | 57  
   2 | 28  
   2 | 14  
   2 |  7  
Remainder
   1  
   0  
   0  
```
From Decimal to Binary

\[
\begin{array}{c|c}
2 & 57 \\
2 & 28 \\
2 & 14 \\
2 & 7 \\
3 & \\
\end{array}
\quad \text{Remainder}
\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
1 \\
\end{array}
\]
From Decimal to Binary

<table>
<thead>
<tr>
<th>2</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Remainder:
- 1
- 0
- 0
- 1
- 1
From Decimal to Binary

\[
\begin{array}{c|c}
2 & \underline{57} \\
2 & \underline{28} \\
2 & \underline{14} \\
2 & \underline{7} \\
2 & \underline{3} \\
2 & \underline{1} \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}
\]
Octal

- Octal is base 8
- Same idea
Octal Example

• What is 172 octal in decimal?
Octal Example

172
Octal Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

-Break it down into its separate digits
Octal Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Sixty-fours</td>
<td>Eights</td>
<td>Ones</td>
</tr>
<tr>
<td>1 \times 8^2</td>
<td>7 \times 8^1</td>
<td>2 \times 8^0</td>
</tr>
</tbody>
</table>

-Break it down into its separate digits
Octal Example

<table>
<thead>
<tr>
<th></th>
<th>Sixty-fours</th>
<th>Eights</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 x 8²</td>
<td>7 x 8¹</td>
<td>2 x 8⁰</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>8 8 8 8 8 8 8 (56)</td>
<td>1 1</td>
</tr>
</tbody>
</table>

- Break it down into its separate digits
Octal Example

Answer: 122

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Sixty-fours</td>
<td>Eights</td>
<td>Ones</td>
</tr>
<tr>
<td>(1 \times 8^2)</td>
<td>(7 \times 8^1)</td>
<td>(2 \times 8^0)</td>
</tr>
<tr>
<td>64</td>
<td>56</td>
<td>1 1</td>
</tr>
</tbody>
</table>

-Break it down into its separate digits
From Decimal to Octal

• What is 182 decimal to octal?
From Decimal to Octal
From Decimal to Octal

\[
\begin{array}{c|c}
8 & 182 \\
22 & 6 \\
\end{array}
\]
From Decimal to Octal

\[
\begin{array}{c|c}
8 & 182 \\
\hline
8 & 22 \\
\hline
2 & 6 \\
\hline
2 & 6 \\
\end{array}
\]
From Decimal to Octal

\[
\begin{array}{c|c}
8 & 182 \\
8 & 22 \\
8 & 2 \\
\hline
0 & 6 \\
0 & 6 \\
0 & 2
\end{array}
\]
Hexadecimal

- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
 - Each hexadecimal digit maps to four binary digits
 - Can just memorize a table
Hexadecimal

- Digits 0-9, along with A (10), B (11), C (12), D (13), E (14), F (15)
Hexadecimal Example

• What is 1AF hexadecimal in decimal?
Hexadecimal Example

<table>
<thead>
<tr>
<th>I</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Two-fifty-sixes</td>
<td>Sixteens</td>
<td>Ones</td>
</tr>
</tbody>
</table>
Hexadecimal Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>Two-fifty-sixes</td>
<td>Sixteens</td>
<td>Ones</td>
</tr>
<tr>
<td>1×16^2</td>
<td>10×16^1</td>
<td>15×16^0</td>
</tr>
</tbody>
</table>
Hexadecimal Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-fifty-sixes</td>
<td>1 x 16^2</td>
<td>10 x 16^1</td>
<td>15 x 16^0</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>16 16 16 16 16 16 (160)</td>
<td>1</td>
</tr>
</tbody>
</table>
Hexadecimal to Binary

- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)
Hexadecimal to Binary

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A (10)</td>
<td>1010</td>
</tr>
<tr>
<td>B (11)</td>
<td>1011</td>
</tr>
<tr>
<td>C (12)</td>
<td>1100</td>
</tr>
<tr>
<td>D (13)</td>
<td>1101</td>
</tr>
<tr>
<td>E (14)</td>
<td>1110</td>
</tr>
<tr>
<td>F (15)</td>
<td>1111</td>
</tr>
</tbody>
</table>

- 0x1AF: 0001 1010 1111
- 0101 1010: 0x5A
Bitwise Operations
Bitwise AND

- Similar to logical AND (&&), except it works on a bit-by-bit manner
- Denoted by a single ampersand: &

\[(1001 \ & \\ 0101) = \\ 0001\]
Bitwise OR

• Similar to logical OR (| |), except it works on a bit-by-bit manner

• Denoted by a single pipe character: |

\[(1001 \mid 0101) = 1101\]
Bitwise XOR

• Exclusive OR, denoted by a carat: ^

• Similar to bitwise OR, except that if both inputs are 1 then the result is 0

\[(1001 \ ^\ 0101) = 1100\]
Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: ~

\[\sim 1001 = 0110 \]
Shift Left

- Move all the bits \mathbb{N} positions to the left, subbing in \mathbb{N} 0s on the right
Shift Left

• Move all the bits N positions to the left, subbing in N 0s on the right

1001
Shift Left

- Move all the bits N positions to the left, subbing in N 0s on the right

$$1001 << 2 = 100100$$
Shift Left

• Useful as a restricted form of multiplication
• Question: how?

\[1001 \ll 2 = 100100 \]
Shift Left as Multiplication

- Equivalent decimal operation:

234
Shift Left as Multiplication

- Equivalent decimal operation:

\[
234 \ll 1 = 2340
\]
Shift Left as Multiplication

- Equivalent decimal operation:

\[
234 << 1 = 2340 \\
234 << 2 = 23400
\]
Multiplication

- Shifting left N positions multiplies by $(\text{base})^N$
- Multiplying by 2 or 4 is often necessary (shift left 1 or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

$$234 << 2 = 23400$$
Shift Right

- Move all the bits N positions to the right, subbing in either N 0s or N 1s on the left
- Two different forms
Shift Right

• Move all the bits N positions to the right, subbing in either N 0s or N (whatever the leftmost bit is)s on the left

• Two different forms

$$1001 \gg 2 =$$

either 0010 or 1110
Shift Right Trick

• Question: If shifting left multiplies, what does shift right do?
Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result
Shift Right Trick

• Question: If shifting left multiplies, what does shift right do?
 • Answer: divides in a similar way, but truncates result

234
Shift Right Trick

• Question: If shifting left multiplies, what does shift right do?

• Answer: divides in a similar way, but truncates result

\[
234 \gg 1 = 23
\]
Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
 - And why is this called “arithmetic” shift right?

1100 \ (arithmetic) \gg 1 = 1110
Answer...Sort of

- Arithmetic form is intended for numbers in *twos complement*, whereas the non-arithmetic form is intended for *unsigned* numbers
Twos Complement
Problem

• Binary representation so far makes it easy to represent positive numbers and zero

• Question: What about representing negative numbers?
Twos Complement

• Way to represent positive integers, negative integers, and zero

• If 1 is in the *most significant bit* (generally leftmost bit in this class), then it is negative
Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation
Decimal to Twos Complement

• Example: -5 decimal to binary (twos complement)

• First, convert the magnitude to an unsigned representation

\[5 \text{ (decimal)} = 0101 \text{ (binary)} \]
Decimal to Twos Complement

• Then, take the bits, and negate them
Decimal to Twos Complement

- Then, take the bits, and negate them

0101
Decimal to Twos Complement

- Then, take the bits, and negate them

\[\sim 0101 = 1010 \]
Decimal to Twos Complement

• Finally, add one:
Decimal to Twos Complement

• Finally, add one:

1010
Decimal to Twos Complement

- Finally, add one:

\[1010 + 1 = 1011 \]
Twos Complement to Decimal

- Same operation: negate the bits, and add one
Twos Complement to Decimal

- Same operation: negate the bits, and add one

1011
Twos Complement to Decimal

- Same operation: negate the bits, and add one

\[\sim 1011 = 0100 \]
Twos Complement to Decimal

- Same operation: negate the bits, and add one

0100
Twos Complement to Decimal

• Same operation: negate the bits, and add one

\[
0100 + 1 = 0101
\]
Where Is Twos Complement From?

• Intuition: try to subtract 1 from 0, in decimal

• Involves borrowing from an invisible number on the left

• Twos complement is based on the same idea