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Figure 1: We propose a multiple-bounce microfacet model derived with the invariance principle. Our model produces results
with less noise, compared to existing approaches (Heitz et al. [2016] and Bitterli and d’Eon [2022]), with equal time (about
11.5 seconds for point/directional lighting and 100.0 seconds for environment lighting). Note that the bidirectional reflectance
distribution function (BRDF) computation by Heitz et al. [2016] is faster than others, so more samples are used for their
method. Similarly, our method has a simpler formulation than Bitterli and d’Eon [2022], resulting in more samples when
rendered with equal time.
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ABSTRACT
Smith microfacet models are widely used in computer graphics to
represent materials. Traditional microfacet models do not consider
themultiple bounces onmicrogeometries, leading to visible energy
missing, especially on rough surfaces. Later, as the equivalence
between the microfacets and volume has been revealed, random
walk solutions have been proposed to introduce multiple bounces,
but at the cost of high variance. Recently, the position-free prop-
erty has been introduced into the multiple-bounce model, result-
ing in much less noise, but also bias or a complex derivation. In
this paper, we propose a simple way to derive the multiple-bounce
Smith microfacet bidirectional reflectance distribution functions
(BRDFs) using the invariance principle. At the core of our model
is a shadowing-masking function for a path consisting of direction
collections, rather than separated bounces. Our model ensures un-
biasedness and can produce less noise compared to the previous
work with equal time, thanks to the simple formulation. Further-
more, we also propose a novel probability density function (PDF)
for BRDF multiple importance sampling, which has a better match
with the multiple-bounce BRDFs, producing less noise than previ-
ous naive approximations.

CCS CONCEPTS
•Computingmethodologies→Rendering;Reflectancemod-
eling.
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1 INTRODUCTION
Material models are essential to realistic rendering, since they de-
scribe the interaction between light and surfaces. The microfacet
model [Cook and Torrance 1982; Walter et al. 2007] is a commonly
used analytical material model, which assumes that a surface is
made of plenty of small microfacets. And the distribution of these
microfacets, or normal distribution function (NDF), characterizes
the principal appearance of the surface. Besides, the occlusion be-
tween microfacets is modeled using the shadowing-masking func-
tion, which encodes the proportion of light that may reach a micro-
facet without being occluded by others. Therefore, the classical mi-
crofacet bidirectional scattering distribution function (BSDF) can
accurately model the single bounce of light among the microfacets.
However, since the light can actually bounce/scattermultiple times
before exiting the microgeometry, particularly for rough surfaces,
the microfacet model can lead to an obvious energy loss.

It is difficult to solve the multiple bounces of light from the
microfacet model. Various assumptions have been made, and we
are especially interested in the Smith approximation – the NDFs
are always the same regardless of different positions [Smith 1967].
The Smith approximation immediately suggests the similarity be-
tween microfacets and a volumetric medium, thus leading to ran-
dom walk solutions by Heitz et al. [2016] and Dupuy et al. [2016].

They trace light paths inside the volume, keeping track of the po-
sitions of each bounce and producing accurate results. Bitterli and
d’Eon [2022] decrease the integral dimension using a closed-form
formulation of the height distribution by assuming a hyperexpo-
nential distribution, leading to unbiased and less-noisy results.Wang
et al. [2022a] introduce the position-free property into themultiple-
bounce computation, assuming the independence between the bounces
(except sharing the same direction). Their model produces much
less noise for both reflection and refraction and is unrelated to any
specific height distribution. However, their results differ from the
previous works due to the independent-bounce assumption.

In this paper, we propose an unbiased multiple-bounce micro-
facet model with the invariance principle [Ambartsumian 1943],
which was introduced for planetary physics and radiative trans-
fer by Ambartsumian [1943] for isotropic scattering and known as
the Chandrasekhar’s BRDF [Chandrasekhar 1960]. We extend the
invariance principle to handle anisotropic phase functions, result-
ing in a simple formulation of the multiple-bounce Smith micro-
facet model. Thanks to this theory, we generalize the shadowing-
masking function from a single bounce to an entire path built on
top of the position-freemultiple-bouncemodel byWang et al. [2022a].
In practice, since our model has a simpler formulation, it results in
an even lower noise level compared to the previous method [Bit-
terli and d’Eon 2022] when rendered with equal time, while retain-
ing their merits, e.g., passing the white furnace test, and working
with anisotropic materials and general normal distributions such
as Beckmann [Beckmann and Spizzichino 1963] and GGX [Walter
et al. 2007].

Furthermore, we improve the PDF of themultiple-bouncemicro-
facet model by approximating the multiple bounces within a semi-
infinite anisotropic medium with an isotropic multiple-bounce ap-
proximation [Hapke 1981]. Our PDF better matches the multiple-
bounce function than the commonly used approximation [Heitz
et al. 2016;Wang et al. 2022a] –the single-bouncemicrofacet model
together with a Lambertian term, leading to a higher quality when
rendered with multiple importance sampling (MIS) [Veach 1997],
particularly for low-roughness materials where the Lambertian ap-
proximation no longer holds.

An open source implementation of our methods is available at
https://github.com/wangningbei/sourceCodeMBBRDF.

2 RELATEDWORK
In this section, we briefly review previousworks related tomultiple-
bounce Smith microfacet model and the invariance principle.

2.1 Multiple-bounce microfacet models.
The typical microfacet models only express the single bounce on
the surface microgeometry, resulting in an energy loss. We group
the existing works on multiple-bounce computations into two cat-
egories: physically-based and non-physically based models.

Physically-based multiple-bounce microfacet models. The multi-
ple bounces of the Smith model does not have an explicit formula.
Monte Carlo random walk has become one necessary solution for
accurate results. For that, the microfacets are treated as randomly
distributedmicroflakes [Heitz et al. 2016] or homogeneousmedium
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Table 1: Notations.

Mathematical notation
Ω full spherical domain
Ω+ upper spherical domain
Ω− lower spherical domain
𝜔𝑖 · 𝜔𝑜 dot product
|𝜔𝑖 · 𝜔𝑜 | absolute value of the dot product
𝑜 ( ) the infinitesimal of higher order

Physical quantities used in microfacet models
𝜔𝑔 = (0, 0, 1) geometric normal
𝜔𝑚 microfacet normal
𝜔𝑖 incident direction
𝜔𝑜 outgoing direction
Λ(𝜔 ) the Smith Lambda function
𝐷 (𝜔𝑚 ) normal distribution function
𝐷𝜔𝑖 (𝜔𝑚 ) visible normals’distribution
𝐹 (𝜔𝑖 , 𝜔𝑚 ) Fresnel factor
𝜌 (𝜔𝑖 , 𝜔𝑜 ) multiple-bounce BSDF with the cosine term

[Dupuy et al. 2016], where Heitz et al. [2016] need a height distribu-
tion function to trace the height1. These methods can be extended
to normal-mapped surfaces [Schüssler et al. 2017] or combined
with wave optics [Falster et al. 2020]. Bitterli and d’Eon [2022]
decrease the integral dimension by deriving an analytical preinte-
gration of collision distances. The key insight of their model is an
explicit formulation of the height distribution as a hyperexponen-
tial distribution. Their model produces identical results as Heitz et
al. [2016], with less noise level. Recently, Wang et al. [2022a] intro-
duce the position-free property into the multiple-bounce compu-
tation, leading to significant variance reduction, by treating each
bounce at the micro-scale separately. The independent bounce as-
sumption in their model introduces bias, making their results dif-
ferent from Heitz et al. [2016]. Similar to these works, our model
follows the position-free assumption, reducing themultiple-bounce
path integral dimensions to the angular dimension only. However,
we remove the independent-bounce assumption. Thanks to the in-
variance principle, our model has a much simpler formulation and
derivation. And in practice, this leads to identical results to Bitterli
and d’Eon [2022] but with even lower noise when rendered with
equal time.

Different from Smith microfacet models, the V-groove models
[Lee et al. 2018; Xie and Hanrahan 2018] allow for analytic solu-
tions for multiple bounces. However, they produce shiny appear-
ance even on rough surfaces and have singularities in the shadowing-
masking term. We do not extend further discussion on these mod-
els.

Non-physically based multiple-bounce microfacet models. Some
existing methods [Bai et al. 2022; Wang et al. 2022b; Xie et al.
2019] use neural networks to represent the multiple-bounce BS-
DFs, avoiding the random walk during rendering at the cost of in-
troducing bias.

1They observed that for a couple of specific choices of height distributions (e.g., uni-
form distribution and Gaussian distribution), the rendered results are the same, with-
out proof for generalization.

Some other approximatemultiple-bouncemodels have been pro-
posed for efficient rendering, by mixing the single scattering with
an additional lobe empirically [Kulla and Conty 2017], or by scal-
ing the single bounce results [Turquin 2019]. These methods are
fast, but are less accurate.

2.2 The Invariance principle
Ambartsumian [1943] proposed the invariance principle for radia-
tive transfer. He derived a semi-analytical formulation to model
a multiple-bounce BRDF with an isotropic phase function within
a semi-infinite medium. This is the first time that the invariance
principle was used to model the light transport within a medium.
Later, Ambartsumian [1944] extended the semi-analytical formu-
lation for arbitrary phase functions rather than isotropic ones.

Chandrasekhar [1960] proposed a different form of the multiple-
bounce function, reducing to solving equations, known as 𝐻 func-
tions. His model is also called Chandrasekhar’s BRDF in the fol-
lowing works. Horak and Chandrasekhar [1961] proposed a three-
term phase function with Legendre polynomials, leading to an an-
alytical solution to the multiple bounces within a semi-infinite
medium. However, the computation is highly complex, making
rendering less practical. Recently, d’Eon [2021] introduced the
three-term model by Horak and Chandrasekhar [1961] for a Lam-
bertian sphere phase function. By introducing some approxima-
tions, his model becomes muchmore practical and achieves a faith-
ful appearance. Pharr andHanrahan [2000] use the invariance prin-
ciple to derive the integral scattering equation for slabs of media.
Note that their model still needs to sample the depth rather than
angularly only, which is a key difference from ours.

Previous works cannot be applied to the multiple-bounce com-
putation within the microfacets directly, since the phase function
in this problem is anisotropic (depends on the direction).Therefore,
we derive a novel scattering function specialized for our problem.

3 BACKGROUND AND OVERVIEW
In this section, we analyze the multiple-bounce Smith models re-
lated to ours, highlighting the differences between these methods.
Then we provide an overview of our model.

3.1 Path formulation of multiple-bounce
Smith models

Before analyzing the existing methods, we first define the nota-
tions. The light transport at any shading point s, potentially under-
going multiple bounces, is defined as a path integral for a given
pair of query directions 𝜔𝑖 and 𝜔𝑜 . Thus, the query directions 𝜔𝑖

and 𝜔𝑜 construct a path space. The light path is defined differently
in the existing approaches, as shown in Figure 2. Nevertheless, this
light path includes two domains: a spatial domain and an angular
domain. We use a set of directions to define the angular domain:
𝑥𝑎 = (d0, d1, . . . , d𝑘 ). The first and last directions are aligned with
the macro incident and outgoing directions of a BSDF query, i.e.,
d0 = 𝜔𝑖 and d𝑘 = 𝜔𝑜 . Note that the direction of 𝜔𝑖 points down-
wards. About the spatial domain, different models have different
parameterizations.

Heitz et al. [2016] treat the microfacets as a mi-
croflake volumetric model, leading to a path defined as
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Figure 2: These four models define the path space of
multiple-bounce BRDFs in different ways. The path space
defined by Heitz et al. [2016] includes the height of the mi-
crogeometry. Bitterli and d’Eon [2022] turn the ray distance
into the height difference and then perform preintegration
on the spatial domain.Wang et al. [2022a] and ourmodel are
position-free, except our model removes the independent-
bounce assumption.

𝑥H = (ℎ0, d0, ℎ1, d1, . . . , d𝑘 ). Dupuy et al. [2016] simplify
the medium from anisotropic media to a homogeneous media,
resulting in a path denoted as 𝑥D = (d0, 𝑡0, d1, 𝑡1, . . . , d𝑘 ).
Recently, Bitterli and d’Eon first transform the distance along a
ray to a height difference Δ𝑧 and then perform a preintegration
of the height component; thus, the final path of their model
𝑥B = (d0, d1, . . . , d𝑘 ), remains in the angular domain only. The
variable change from the ray distance to the height difference
allows for integrating explicitly over the depths, resulting in
lower variance. All the above models provide the same result.
Another model byWang et al. [2022a] introduces the position-free
property into the micro scale of a BRDF, resulting in the angular
only domain directly 𝑥W = (d0, d1, . . . , d𝑘 ).

3.2 Position-free multiple-bounce Smith
microfacet model

Since our model is under the position-free framework by Wang et
al. [2022a], we briefly review their model.Wang et al. [2022a] intro-
duced the position-free property into the micro scale of a BRDF, re-
sulting in a simple multiple-bounce solution for Smith microfacet
models.

Starting from the light path 𝑥 = (d0, d1, . . . , d𝑘 ), the contribu-
tion 𝑓 (𝑥) of this light path is the product of vertex terms 𝑣𝑖 (on
each vertex) and segment terms 𝑠𝑖 (on each direction):

𝑓 (𝑥) =
𝑖=𝑘−1∏
𝑖=0

𝑣𝑖𝑠𝑖 . (1)

The vertex term 𝑣𝑖 is defined to represent local interactions be-
tween the light and the microfacets, consisting of the normal dis-
tribution function 𝐷 , the Fresnel term 𝐹 , and the Jacobian term:

𝑣𝑖 =
𝐹

(
−d𝑖 , 𝜔𝑖

ℎ

)
𝐷

(
𝜔𝑖
ℎ

)
4
��𝜔𝑔 · (−d𝑖 )

�� , (2)

where 𝜔𝑔 is the macrosurface normal and 𝜔𝑖
ℎ
denotes the half vec-

tor between d𝑖 and d𝑖+1.
The segment term considers the shadowing-masking function

of the light path. Two types of shadowing-masking functions are
proposed byWang et al. [2022a]: a height-uncorrelated shadowing-
masking and a height-correlated one. Both functions are defined
on each bounce separately. The latter considers the correlation be-
tween incoming and outgoing rays at each bounce, while the for-
mer treats the incoming and outgoing rays at each bounce inde-
pendently. The final segment terms are the accumulation of each
bounce. This bounce-independent assumption leads to different
rendered results from the other models.

3.3 Overview
We follow the position-free property by Wang et al. [2022a], but
with one essential difference: considering the correlation of the
segment term among bounces. We notice that the segment term of
a bounce depends on the previous bounces.Therefore, the segment
term should be defined for the entire light path rather than for in-
dividual bounces. In this way, the contribution of a light path with
bounce 𝑘 in our model consists of the vertex terms and a segment
term 𝑆𝑘 defined on the light path:

𝑓 (𝑥) =
(
𝑖=𝑘−1∏
𝑖=0

𝑣𝑖

)
𝑆𝑘 (d0, d1, . . . , d𝑘 ), (3)

where 𝑣𝑖 is identical as Eqn. (2).
In the next section, we derive a segment term 𝑆𝑘 for a light path

in an elegant way using the invariance principle. Once we have
the formation of 𝑆𝑘 and thus 𝑓 (𝑥) for a single light path, the fi-
nal multiple-bounce BRDF can be computed similar to Wang et
al. [2022a]. We just need unidirectional path tracing or bidirec-
tional path tracing, both position-free, to sample in the path space
𝑥W = (d0, d1, . . . , d𝑘 ), where each sampled light path consists of
only sampled directions.

4 THE PATH SEGMENT TERM VIA THE
INVARIANCE PRINCIPLE

In this section, we derive our segment term for a sampled light path
using the invariance principle [Ambartsumian 1943] (Sec. 4.1).
Then we analyze the main properties and merits of our model
(Sec. 4.2).

The invariance principle is based on the evident but insight-
ful fact that adding a layer of small optical thickness Δ𝜏 with the
same properties as the original medium to this medium, should not
change its reflectivity. It implies that the total contribution of the
processes associated with the added layer must be zero. We follow
this principle, and introduce it for medium with infinite thickness,
resulting in our multiple-bounce formulation.
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Multiple-bounce path      Single sca�ering event

Figure 3: Four cases of light transport due to the adding of
the thin layer: (a) extinction only within the thin layer; (b)
scattering once within the thin layer without reaching the
bottom medium ; (c) scattering at the incoming ray, and (d)
scattering at the outgoing ray.

4.1 Multiple-bounce formulation for the
reflective microfacet model

We follow the assumption of Dupuy et al. [2016] and Bitterli
and d’Eon [2022] that the microfacet model is equivalent to a
semi-infinite homogeneous medium. Given a semi-infinite homo-
geneous medium M, we add a slice of medium with thickness Δ𝜏
on top of M. The addition of this thin layer causes some changes
in the light transport within the medium. As shown in Figure 3,
we recognize four cases:

(1) extinction within this thin layer,
(2) scattering at thin layer without reaching the medium M,
(3) scattering within the incoming ray when crossing the thin

layer and then scatteringwithin themedium, and leave from
the outgoing ray from the thin layer without scattering, and

(4) the symmetric case of case 3.

We only consider no scattering (case 1) or scattering once (the
other three cases) in the thin layer. Since Δ𝜏 is chosen to be suffi-
ciently thin, which can be at least an order of magnitude thinner
than the mean free path, there is no need to consider higher-order
scattering events.

Case 1. The new added layer makes attenuation on both the
incoming and the outgoing directions, leading to the following
change in the outgoing radiance:

Δ𝐿0 = 𝜌 (𝜔𝑖 , 𝜔𝑜 ) 𝐿
(
1 − 𝑒−Δ𝜏 ( |Λ(𝜔𝑖 ) |+Λ(𝜔𝑜 ) )

)
= 𝜌 (𝜔𝑖 , 𝜔𝑜 ) (𝐿Δ𝜏) ( |Λ (𝜔𝑖 ) | + Λ (𝜔𝑜 )) + 𝑜 (Δ𝜏),

(4)

where 𝜌 (𝜔𝑖 , 𝜔𝑜 ) represents the multiple-bounce BRDF with the co-
sine term. 𝐿(𝜔𝑖 ) is the incoming radiance, written as 𝐿 for clar-
ity. When 𝑥 is small enough (but still a positive number), 1 − 𝑒−𝑥

will converge to 𝑥 . The infinitesimal of higher order is denoted
by 𝑜 (Δ𝜏), which can be ignored. Λ is the Smith Lambda func-
tion [Heitz 2014].

Case 2. The light is scattered only in the added layer, without
reaching the medium M:

Δ𝐿1 = 𝑓𝑝 (𝜔𝑖 , 𝜔𝑜 ) 𝐿
(
1 − 𝑒−Δ𝜏 |Λ(𝜔𝑖 ) |

)
𝑒−Δ𝜏Λ(𝜔𝑜 )

= 𝑓𝑝 (𝜔𝑖 , 𝜔𝑜 ) (𝐿Δ𝜏) |Λ (𝜔𝑖 ) | + 𝑜 (Δ𝜏)
= 𝑣 (𝜔𝑖 , 𝜔𝑜 ) 𝐿Δ𝜏 + 𝑜 (Δ𝜏),

(5)

where Δ𝐿1 is the change of the outgoing radiance due to the added
layer. Note that 𝑒−𝑥 converges to 1 for a small positive number
𝑥 . The phase function 𝑓𝑝 of the scattering, as Heitz et al. [2016],
defined as:

𝑓𝑝 =
𝐹 (𝜔𝑖 , 𝜔ℎ) 𝐷𝜔𝑖 (𝜔ℎ)

4 |𝜔ℎ · 𝜔𝑖 |
, (6)

where 𝐷𝜔𝑖 is the visible normal distribution function (VNDF). In-
terestingly, the product of the phase function and the |Λ (𝜔𝑖 ) | re-
sults in the vertex term of the single bounce.

Case 3. The light is scattered once in the added layer, reaches
medium M, and later leaves the medium by going through the
thin layer. Since the scattering direction in the added layer could
be any direction in the lower-hemisphere, there is an integral on
the lower-hemisphere here:

Δ𝐿2 =
∫
Ω−

𝑓𝑝 (𝜔𝑖 , 𝜔) (𝐿Δ𝜏) |Λ (𝜔𝑖 ) | 𝜌 (𝜔,𝜔𝑜 ) d𝜔 + 𝑜 (Δ𝜏)

= 𝐿Δ𝜏

∫
Ω−

𝑣 (𝜔𝑖 , 𝜔) 𝜌 (𝜔,𝜔𝑜 ) d𝜔 + 𝑜 (Δ𝜏) .
(7)

Case 4. The symmetric case of case 3, where the scattering hap-
pens on the outgoing direction:

Δ𝐿3 =
∫
Ω+

𝜌 (𝜔𝑖 , 𝜔) (𝐿Δ𝜏) |Λ (𝜔) | 𝑓𝑝 (𝜔,𝜔𝑜 ) d𝜔 + 𝑜 (Δ𝜏)

= 𝐿Δ𝜏

∫
Ω+

𝜌 (𝜔𝑖 , 𝜔) 𝑣 (𝜔,𝜔𝑜 ) d𝜔 + 𝑜 (Δ𝜏) .
(8)

The invariance principle implies that the four cases should guaran-
tee energy conservation:

Δ𝐿0 = Δ𝐿1 + Δ𝐿2 + Δ𝐿3 . (9)

Then, we have
𝜌 (𝜔𝑖 , 𝜔𝑜 ) (𝐿Δ𝜏) ( |Λ (𝜔𝑖 ) | + Λ (𝜔𝑜 )) = 𝑣 (𝜔𝑖 , 𝜔𝑜 ) 𝐿Δ𝜏 +

𝐿Δ𝜏

∫
Ω−

𝑣 (𝜔𝑖 , 𝜔) 𝜌 (𝜔,𝜔𝑜 ) d𝜔 + 𝐿Δ𝜏

∫
Ω+

𝜌 (𝜔𝑖 , 𝜔) 𝑣 (𝜔,𝜔𝑜 ) d𝜔.
(10)

By cancelling some common factors, and unifying the integral do-
main to the upper hemisphere, we have

𝜌 (𝜔𝑖 , 𝜔𝑜 ) =
1

Λ (−𝜔𝑖 ) + Λ (𝜔𝑜 ) + 1

(
𝑣 (𝜔𝑖 , 𝜔𝑜 ) +∫

Ω+

(
𝑣 (𝜔𝑖 ,−𝜔) 𝜌 (−𝜔,𝜔𝑜 ) + 𝜌 (𝜔𝑖 , 𝜔) 𝑣 (𝜔,𝜔𝑜 )

)
d𝜔

)
.

(11)

Starting from the above equation, we can easily derive the con-
tribution of a sampled light path 𝑥0

𝑘
= (d0, d1, . . . , d𝑘 ) with bounce

𝑘 :

𝑓
(
𝑥0𝑘

)
=
𝑣 (d0,−d𝑘−1) 𝑓

(
𝑥1
𝑘

)
+ 𝑣 (d𝑘−1, d𝑘 ) 𝑓

(
𝑥0
𝑘−1

)
Λ (−d0) + Λ (d𝑘 ) + 1

. (12)
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Figure 4: Three types of configurations in terms of the ray
directions for a light path with three bounces. The first path
type has the second recursive term in Eqn. (13) only, and the
second one has the first recursive term in Eqn. (13) only, and
the last path type has both recursive terms.The outgoing ray
pointing downwards, or the incoming ray coming from the
lower hemisphere indicates that the light path is invalid.

Substituting Eqn. (3) into the above equation and canceling the
vertex terms leads to the segment term of a light path :

𝑆𝑘 (d0, . . . , d𝑘 ) = 𝑆1 (d0, d𝑘 ) (𝑆𝑘−1 (d0, . . . , d𝑘−1) +
𝑆𝑘−1 (d1, . . . , d𝑘 )) .

(13)

The above equation shows that the segment term of a light path
with bounce 𝑘 consists of two recursive terms. However, we find
that only a single recursive term has a physical meaning for some
light paths. For example, in Figure 4, we show three path configu-
rations (the orientation of the ray) for a path with three bounces.
Only one recursive term exists for the first and second path types.
The other recursive term in these two types has an invalid incom-
ing/outgoing ray direction, i.e., the outgoing ray pointing down-
wards or the incoming ray coming from the lower hemisphere.
For the last path configuration, both recursive terms exist. We also
need to formulate these rules into our formulation:

𝑆1 (d0, d1) =
1

1 + Λ(−d0) + Λ(d1)
,

𝑆𝑘 (d0, . . . , d𝑘 ) =

0, if d0 .𝑧 > 0 or d𝑘 .𝑧 < 0,

𝑆1 (d0, d𝑘 ) (𝑆𝑘−1 (d0, . . . , d𝑘−1) +
𝑆𝑘−1 (d1, . . . , d𝑘 )) , otherwise.

(14)

In the above equation, we find that our single-bounce segment
term (𝑆1 (d0, d1)) also matches the height-correlated shadowing-
masking function by Ross et al. [2005]. The implementation of our
model is detailed in Sec. 4.3.

In theory, the time complexity of our method is𝑂 (𝑁𝑀), where
𝑁 and 𝑀 represent the ray count pointing upwards and down-
wards respectively and 𝑁 +𝑀 == 𝑘 . Therefore, the best case of the
time complexity is linear in 𝑘 , and the worst case is quadratic in 𝑘 .
However, in practice, up to 10 bounces, the time cost is very close
to a linear function of 𝑘 , since most of the light paths (about 90%
for Vase scene, as shown in Figure 10) only have one or two direc-
tions pointing downwards. In Figure 10, we show the segment term
computation time cost curve as a function of the bounce count and
provide an in-depth discussion.

Bitterli and d’Eon [2022] proposed a similar concept 𝑝exit,
which is the probability of a photon exiting the medium, condi-
tioned on the directions it takes after each collision. This 𝑝exit is

similar but not equivalent to our segment term, since some terms
in their 𝑝exit are included in our vertex term. We provide an in-
depth discussion in the supplementary.

4.2 Properties and analysis
We analysis the main properties of our model in this section.

Unbiasedness and reciprocity. Our model is unbiased and pro-
duces the identical results as Heitz et al. [2016]. We provide the
convergence curve of our model w.r.t. varying sample rate in Fig-
ure 10. The removal of the independent-bounce assumption from
Wang et al. [2022a] makes our model unbiased. Furthermore, our
model is reciprocal, since both our vertex terms and the segment
term Eqn. (14) are reciprocal.

Relationship to the model by Bitterli and d’Eon [2022]. Both Bit-
terli and d’Eon [2022] and our model are unbiased. We also find
that their model and ours are equivalent for a specific bounce (e.g.,
bounces = 2 or 3) with a non-trivial derivation, as shown in (Sec.
1.2) (supplementary). However, a general derivation from their
model to ours for an arbitrary bounce is not apparent. Our model
shows two benefits compared to theirs. First, the derivation of Bit-
terli and d’Eon [2022] depends on the height distribution and re-
sults in amore complex formulation, while ourmodel has a simpler
derivation thanks to the invariance principle, leading to time effi-
ciency. Second, our model avoids singularities, which come from
the minus of two Λ functions as shown in Eqn. (6) (supplemen-
tary), although the numerical stability is rarely an issue for BRDF
evaluation. Hence, the rendered results of Bitterli and d’Eon [2022]
have the same variance as ours with an equal number of samples,
but are noisier rendered with equal time. In the supplementary, we
also provide the algorithms for both models, and explicitly show
the reason for our time efficiency.

4.3 Efficient BRDF evaluation and sampling
In this section, we show the implementation details of the two key
components for a BRDF: evaluation and sample.

Evaluation. We provide two estimators for BRDF evaluation: a
unidirectional estimator using path tracing and a bidirectional es-
timator using bidirectional path tracing. We provide the details for
the unidirectional estimator only, and the bidirectional version is
the same as Wang et al. [2022a], except for the segment term.

Starting from the incoming ray direction d0, we sample the visi-
ble normal distribution function to get a new direction and perform
the next event estimation by connecting with the outgoing direc-
tiond𝑘 .The path sampling termination is controlled by the Russian
roulette [Arvo and Kirk 1990]. To compute 𝑆𝑘 efficiently, we use
dynamic programming, as shown in Alg. 1 ( supplementary).

Sample. At each bounce, we sample the VNDF to get the outgo-
ing direction and then compute themasking function (𝐺1 function)
of the sampled ray to decide whether to exit the microgeometry.
Otherwise, we treat the sampled direction as the incoming direc-
tion and continue sampling until the ray leaves the surface. After
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getting such a light path, we compute the path contribution by
evaluating the light path divided by the PDF of the sampled path.

4.4 Improved PDF for multiple-bounce BRDF
The PDF of a multiple-bounce BRDF is important for multiple
importance sampling. Since no analytical formulation exists for
multiple-bounce BRDFs, the previous works [Heitz et al. 2016;
Wang et al. 2022a] estimate the multiple-bounce PDF with a Lam-
bertian term and a single-bounce function, which can fit the ac-
tual multiple-bounce BRDFs well for high-roughness materials,
but tends to overestimate the PDF at grazing angle directions for
low-roughness BRDFs.

Our key insight is that although an anisotropic medium has no
analytical multiple-bounce formulation, it can be estimated by an
isotropic multiple-bounce formulation derived by Hapke [1981]:

𝑓mul (𝜔𝑖 , 𝜔𝑜 ) =
𝑎

4𝜋

𝐻
(��𝜔𝑔 · 𝜔𝑖

��) 𝐻 (��𝜔𝑔 · 𝜔𝑜
��) − 1��𝜔𝑔 · 𝜔𝑖

�� + ��𝜔𝑔 · 𝜔𝑜
�� ,

𝐻 (𝜇) = 1 + 2𝜇

1 + 2
√
1 − 𝑎𝜇

,

(15)

where 𝑎 is the albedo of the medium.
We construct such an isotropic medium from the microfacet, by

setting the albedo of the medium as 𝑎 =
𝛼𝑥+𝛼𝑦

2 . Note that this
mapping is empirical, due to the observation that the albedo of
the medium dominates the scattering distribution for an isotropic
medium and the roughness dominates the scattering distribution
for the microfacet model. Our final PDF includes the single bounce
term and the estimated multiple bounce term:

𝑓PDF (𝜔𝑖 , 𝜔𝑜 ) =
𝐷𝜔𝑖 (𝜔ℎ)
4 |𝜔ℎ · 𝜔𝑖 |

+ 𝑓mul (𝜔𝑖 , 𝜔𝑜 ) . (16)

5 RESULTS
We have implemented our algorithm inside the Mitsuba renderer
[2010]. The implementations of Heitz et al. [2016] and Wang et
al. [2022a] are from the authors’ websites. We use the height-
correlated version of Wang et al. [2022a]. We also reimplemented
Bitterli and d’Eon [2022] (PT). We did not provide the results of Bit-
terli and d’Eon [2022] (BDPT), since we were not able to reimple-
ment their model with their provided algorithm. A detailed discus-
sion is shown in the supplementary. For the ground truth images
in Figures 1, 6 and 9, we refer to the converged results using Heitz
et al. [2016]. We use MSE to measure the difference between each
method and the ground truth. All timings in this section are mea-
sured on a 2.20GHz Intel i7 (48 cores) with 32 GB of main memory.

5.1 Comparisons
In Figure 5, we compare the mean BRDF reflectance and the
inverse efficiency as a function of the outgoing direction for a
given incoming direction over several approaches, including our
method, Wang et al. [2022a], Heitz et al. [2016], and Bitterli and
d’Eon [2022]. The inverse efficiency means the product of the vari-
ance and time cost, and a lower value indicates a higher quality.We

show two roughnesses (𝛼 = 0.5 and 1.0) and two incoming direc-
tions. Our BRDF value can match both Heitz et al. [2016] and Bilt-
terli and d’Eon [2022], while our method is the most efficient in all
cases (varying roughness or different incoming directions). Wang
et al. [2022a] cannot match the ground truth and introduce bias
due to the independent-bounce assumption, although their model
has higher performance than ours, when 𝜃𝑜 = 0 for 𝛼 = 1.0.

Matpreview scene. In Figure 6, we show a copper Matpreview
scene (GGX model, 𝛼 = 1.0) lit by a directional light. We compare
our models (PT and BDPT),Wang et al. [2022a] (PT and BDPT) and
Bitterli and d’Eon [2022] (PT) with equal sampling rate (4 sample
per pixel (spp)). Our model (BDPT) outperforms the other methods
with a slightly longer time. The result of Bitterli and d’Eon [2022]
has the same variance as ours (PT) with an equal sampling rate,
but has a higher time cost due to the complex formulation. Wang
et al. [2022a] produce results with a low noise level, but with higher
variance, since their model is biased.We also provide the difference
images, which clearly show that ours (BDPT) has the lowest error.

In Figure 10, we show the MSE curve in terms of sampling rate
for our methods (BDPT and PT), Heitz et al. [2016] and Wang et
al. [2022a] on the Matpreview scene. The ground truth is the con-
verged result of Heitz et al. [2016]. Ourmethods (BDPT and PT) can
converge to the reference, which indicates that our model is unbi-
ased. On the contrary, the model by Wang et al. [2022a] is biased
due to the independent-bounce assumption. Our BDPT version has
the fastest convergence compared to the others.

Vase scene. Figure 9 shows three statues (copper (GGX, 𝛼 = 0.1),
aluminum (Beckmann,𝛼 = 0.6), and gold (GGX,𝛼 =0.5)) on a diffuse
floor with direct lighting only, lit by an environment map and a
point light. We use 256 spp for the environment map lighting to
better show the effect of the BRDF evaluation. To achieve equal
time, we use 17 spp for our method, 34 spp for Heitz et al. [2016]
and 23 spp for Wang et al. [2022a] for the point light source. The
rendered result by Heitz et al. [2016] has the highest noise level.
Although Wang et al. [2022a] has a similar variance as ours, their
result has a larger error because of the fundamental bias.

DecorativeSet scene. We also provide a DecorativeSet scene
with several statues in Figure 1, including different roughness as
shown in the figure. In this scene, the statues are lit by an envi-
ronment map, a directional light, and a point light, considering
both direct lighting and indirect lighting. We compare our method
against other two methods (Heitz et al. [2016] and Bitterli and
d’Eon [2022]) with equal time and use the unidirectional estima-
tor for all the methods. Since the BRDF sample is not mentioned
in Bitterli and d’Eon [2022] and the source code is not available,
we use the same BRDF sample as Heitz et al. [2016]. We use 128
spp for the environment map lighting to better show the effect of
the BRDF evaluation. To achieve equal time, the sampling rates are
set differently for different methods. Our method outperforms the
other methods visually and quantitatively for all the settings.

Pot scene. Wevalidate the impact of our improved PDF by show-
ing PDF curves in Figure 8 and rendered results in Figure 7, com-
paring with the approximation (single bounce + the Lambertian
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term) by previous work [Heitz et al. 2016; Wang et al. 2022a]. Fig-
ure 7 shows three aluminium pots of different roughnesses (𝛼 =
0.15, 𝛼 = 0.2 and 𝛼 = 0.1) with direct lighting from environment
map. We use our BRDF evaluation and sample for both results and
only differ in the PDF function. By comparison, our PDF produces
less noise than the previous approximation.

5.2 Performance analysis
In Figure 10, we show the time cost of the segment term computa-
tion w.r.t. the bounce count. We find that the time cost is almost
linear as the bounce count, although our model has quadratic time
complexity in theory. The time cost depends on the ray counts,
which point upwards and downwards. We find that only a tiny
fraction of the cases have almost even downward and upwards ray
counts (as shown in the right curve) when the time complexity is
high. This explains that the actual time cost is almost linear, al-
though the theory time complexity is quadratic.

5.3 Discussion and limitations
We introduce the invariance principle in the multiple-bounce mi-
crofact model. Unfortunately, our formulation is only derived for
the spatial domain. Like any other existing work in this line of
research, a Monte carlo estimator is still required for the angular
domain to get a path.

Introducing the invariance principle to the multiple bounces of
a refractive surface is much more complex than the reflective case.
Our model relies on the equivalence between the microfacet and
a homogeneous medium. However, a well-known problem is that
for a refractive surface, this equivalence leads to a discontinuous
mapping in the spatial domain. For the same reason, Bitterli and
d’Eon [2022] also consider reflective surfaces only.

6 CONCLUSION
In this paper, we present a multiple-bounce BRDF model. Theo-
retically, we introduce a novel way – the invariance principle, to
derive a multiple-bounce BRDF; practically, we propose an analyt-
ical formulation for the segment term for a path, resulting in unbi-
ased results and faster convergence compared to existing models.
Furthermore, we also propose a novel PDF for BRDF multiple im-
portance sampling, allowing for a better match with the multiple-
bounce BRDFs, producing less noise than commonly used approx-
imations.

To our best knowledge, our model is the first to use the in-
variance principle with an anisotropic phase function. By intro-
ducing the invariance principle to the multiple-bounce microfacet,
we have acquired a simple derivation and a simple form. And we
believe the invariance principle can be applied to similar prob-
lems, like the layered microflake (SpongeCake) model [Wang et al.
2022b]. Furthermore, the multiple bounces of a refractive surface
is challenging, but is also important as future work for a complete
understanding of the microfacet theory.
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Figure 5: Comparison between our model (PT), Heitz et al. [2016], Wang et al. [2022a] (PT), and Bitterli and d’Eon [2022]
(PT) in terms of BRDF reflectance and inverse efficiency (variance × the time cost) for the rough conductor with roughness
0.5 and 1.0. Note that we use the unidirectional estimator for all models. Here, we visualize both terms as a function of the
outgoing direction, given an incoming direction. 𝜃𝑖 and 𝜃𝑜 are the angles between the incident/exit directions and the normal
to the macrosurface, respectively. Our BRDF value can match both Heitz et al. [2016] and Biltterli and d’Eon [2022], while
our method is the most efficient in all cases (varying roughness or different incoming directions). Wang et al. [2022a] can
not match the groundtruth and introduces bias due to the independent-bounce assumption, although their model has higher
performance than ours, when 𝜃𝑜 = 0 for 𝛼 = 1.0.
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Figure 6: Comparison between our models (PT and BDPT), Wang et al. [2022a] (PT and BDPT) and Bitterli and d’Eon [2022]
(PT) with equal sampling rate (4 spp) on the Matpreview scene. Our model (BDPT) produces the highest quality. Note that the
model by Bitterli and d’Eon [2022] has the same variance as ours (PT) with an equal sampling rate, but has a higher time cost.
The result of Wang et al. [2022a] (BDPT) has a low noise level, but shows a larger error than Heitz et al. [2016], for the reason
of bias. The difference images are shown on the bottom right of each image.
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Figure 7: Comparison between our MIS PDF and single bounce + the Lambertian term (Heitz et al. [2016]) with equal sampling
rate (16 spp) on the Pot scene (aluminium, 𝛼 = 0.15, 𝛼 = 0.2 and 𝛼 = 0.1). We use the same BRDF evaluation and sample in both
results, and the only difference is the PDF used for MIS.
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Figure 8: Comparison between our improved MIS PDF, the previous solution (single bounce + the Lambertian term) by Heitz
et al. [2016] and the ground truth using the multiple-bounce BRDF reflectance. The ground truth is plotted with a stochastic
aggregate of multiple-bounce BRDF with 100K samples. Our PDF matches the ground-truth PDF at all roughness, while the
other solution [Heitz et al. 2016] only fits well at high roughness.
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Figure 9: Equal-time comparison (about 2.8 seconds) between our model (BDPT), Wang et al. [2022a] (BDPT) and Heitz et
al. [2016] on the Vase scene. Our model produces the highest quality with equal time.
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Figure 10: Left: The time cost of segment term evaluation as a function of the bounce count. Note that the time cost is almost
linear to bounce. Middle: The error (MSE) of our methods (both BDPT and PT), Wang et al. [2022a] and Heitz et al. [2016]
over varying sampling rate on the Matpreview scene (Figure 6). The converged result by Heitz et al. [2016] is treated as the
ground truth. Our models can converge to the ground truth, while the model byWang et al. [2022a] is biased. Both our models
converge faster than Heitz et al. [2016], while the convergence rate of our model (BDPT) is the fastest. Right: The percentage
of light paths as a function of the ray count pointing downwards on the Vase and DecorativeSet scenes.
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