
SUBMITTED TO IEEE TVCG 1

Lightweight Bilateral Convolutional
Neural Networks for Interactive

Single-bounce Diffuse Indirect Illumination
Hanggao Xin, Shaokun Zheng, Kun Xu, Ling-Qi Yan

Abstract—Physically correct, noise-free global illumination is crucial in physically-based rendering, but often takes a long time to
compute. Recent approaches have exploited sparse sampling and filtering to accelerate this process but still cannot achieve interactive
performance. It is partly due to the time-consuming ray sampling even at 1 sample per pixel, and partly because of the complexity of
deep neural networks. To address this problem, we propose a novel method to generate plausible single-bounce indirect illumination
for dynamic scenes in interactive framerates. In our method, we first compute direct illumination and then use a lightweight neural
network to predict screen space indirect illumination. Our neural network is designed explicitly with bilateral convolution layers and
takes only essential information as input (direct illumination, surface normals, and 3D positions). Also, our network maintains the
coherence between adjacent image frames efficiently without heavy recurrent connections. Compared to state-of-the-art works, our
method produces single-bounce indirect illumination of dynamic scenes with higher quality and better temporal coherence and runs at
interactive framerates.

Index Terms—Real-Time Rendering, Global Illumination.

F

1 INTRODUCTION

G LOBAL illumination is vital in physically-based ren-
dering since it provides photo-level realism. Conven-

tionally, physically correct global illumination is generated
using offline rendering techniques such as Monte Carlo
path tracing. However, it is time-consuming and takes min-
utes or even hours to generate a single frame. Recently,
with the rapid development of GPUs, real-time/interactive
global illumination becomes a hot topic in graphics and has
achieved great success.

We classify existing interactive global illumination meth-
ods into three types. The first type of works are approximate
methods which aim at real-time/interactive performance.
However, such methods usually have limited scopes. For
example, reflection mapping [3] is limited to glossy reflec-
tions only, screen space directional occlusion (SSDO) [2] is
limited to local effects, and voxel cone tracing [4] requires a
large amount of storage. The second type of works are pre-
computation based methods, such as lightmap baking [5],
precomputed radiance transfer (PRT) [6], [7], [8], [9] and
precomputed light probes [10]. Most of the pre-computation
based methods assume static lighting condition or static
scene geometry, thus are limited to certain types of applica-
tions only. The third type of works exploit sparse sampling
and filtering [11], [12] to reconstruct clean and plausible
global illumination from noisy images rendered with a low
sample rate, e.g., 1 to 32 samples per pixel (spp). However,
they still cannot achieve real-time/interactive performance.

A recent trend is to use deep neural networks to pre-
dict approximate global illumination, such as the denoising

Hanggao Xin, Shaokun Zheng, Kun Xu are with BNRist, Department of
Computer Science and Technology, Tsinghua University, Beijing, China. Kun
Xu is the corresponding author, email: xukun@tsinghua.edu.cn.
Ling-Qi Yan is with Department of Computer Science, UC Santa Barbara,
United States.

works [13], [14] that help to remove Monte Carlo noise, and
deep shading [1] that generates various local shading effects.
These methods have unique advantages. They only use
screen space information, require no pre-computation, and
can be used as a black box. However, to achieve plausible
results, the neural networks often have to be deep and
complex, which bears a heavy burden to the performance.
The performance might not be a problem for offline appli-
cations but is extremely crucial in our interactive rendering
application for practical use.

To address this issue, we present an interactive novel
screen space method that predicts single-bounce indirect
illumination, requiring only direct illumination and auxil-
iary features as input. We keep in mind that our neural
network needs to be lightweight to guarantee interactive
performance. To achieve this, we design our neural net-
work as follows. First, we introduce a convolution opera-
tion that explicitly performs bilateral filtering, to directly
feed the depth differences to the neural network. Second,
inspired by recent video processing works [15], we avoid
heavy recurrent connections and force the neural network to
minimize temporal differences by considering optical flow
during the training stage. In this way, our method maintains
temporal coherence while it remains lightweight and does
not introduce run-time overhead. Besides, we integrate our
neural network into an OpenGL rendering framework, so
that no GPU↔CPU data transfer is further needed. With
all these efforts, we can produce high-quality single-bounce
indirect illumination for dynamic scenes, while still main-
taining interactive performance with all other costs (direct
illumination, shadows, etc.) considered together.

To briefly summarize, our main contributions include:

• the first fully predicted single-bounce indirect illumi-



SUBMITTED TO IEEE TVCG 2

Input direct illumination Deep shading / SSDO Our global illumination Reference
(0.3280) (0.0836) / (0.2815) (0.0784)

Fig. 1. Our method can predict high-quality global illumination with a resolution of 1024× 768 from direct illumination and auxiliary features such as
normals and 3D positions. Our method runs at interactive framerates (45.3 FPS in this case) and generates much more plausible results compared
with deep shading [1] and screen space directional occlusion [2]. The numbers above indicate the differences to the reference using the 1-SSIM
metric.

nation method that achieves interactive performance
(> 30 fps) with a resolution of 1024× 768;

• a specifically designed bilateral convolutional neural
network with newly introduced bilateral convolu-
tional layers.

2 RELATED WORK

Neural networks in rendering. Neural networks have been
proven as powerful tools in general, and have also been
successfully applied to rendering. Ren et al. [8] use a shallow
neural network as an efficient representation of the pre-
computed data of radiance transfer. Kallweit et al. [16]
approximate multiple scattering of light within the volumes
of clouds by using a fully connected neural network to
approximate light transport from examples. Besides, re-
searchers have employed neural networks in applications
such as supersampling [17] and anti-aliasing [18].
Screen space rendering can be regarded as post-processing
techniques that only utilize screen space information to
generate rendering effects and are very successful in real-
time applications. Dachsbacher and Stamminger [19] pro-
duce plausible indirect illumination by adaptive sampling
on a reflective shadow map. Screen space ambient occlusion
(SSAO) [20] generates approximate ambient occlusion ef-
fects in real-time. Screen space directional occlusion (SSDO)
[2] extends the idea of SSAO to introduce interreflections
between objects, but is limited to local indirect illumination
only. Deep shading [1] uses deep Convolutional Neural
Networks (CNNs) to produce screen space shading effects
such as SSAO/SSDO and depth-of-field, but only achieves
interactive performance and still cannot capture global ef-
fects. Besides, all these methods mentioned above only work
for single frames and do not consider temporal coherence
between adjacent frames. Specifically, deep shading [1] pro-
duces flickering artifacts when taking an image sequence as
input.
Temporal coherence is important when a continuous se-
quence of images is being processed. Sudden changes be-
tween adjacent frames can be easily observed by human
eyes and are thus objectionable. To guarantee smooth tran-
sitions between frames, Huang et al. [15] use optical flow
to detect pixel correspondences between adjacent frames.
Longer ranges of temporal coherence can also be achieved
with non-local networks [21] or recurrent networks [22],

[23], but these methods are often too costly for real-time ap-
plications, and require long image sequences in the training
set.
Monte Carlo rendering. Researchers have always been in-
vestigating techniques to enhance the performance of Monte
Carlo ray tracing [11], [24], [25], [26], [27]. Generally, they
render noisy images at a low sampling rate and obtain high-
quality images through a filtering or reconstruction step.
Axis-aligned filtering [24] and fast sheared filtering [11] uti-
lize frequency analysis to design theoretically optimal sizes
and shapes of filters. Non-local filtering based methods [28],
[29] consider contributions from spatially non-adjacent re-
gions for more information. Other methods work with even
lower sampling rates (1 ∼ 2 spp) by exploiting temporal
coherence to increase the effective sample count [30].

Neural networks are also widely adopted for Monte
Carlo denoising. Chaitanya et al. [14] propose a denoising
method for image sequences based on a recurrent autoen-
coder. It maintains temporal stability, but the recurrent
connections introduce performance overhead and require
long sequences of rendered images as training data. Bako
et al. [13] propose a kernel-predicting neural network tar-
geted at denoising single images. However, the network is
rather complicated. Also, neither methods can achieve real-
time performance, due to the slow inference caused by the
complex neural network structures.
Bilateral modules have been used to aid neural network
design in the computer vision field. Inspired by bilateral
filtering, Li et al. [31] excavate features from target and
guidance images separately and concatenate those features
directly for remaining learning passes. Apart from guiding
neural networks to learn features well, bilateral filtering
modules have been used to improve performance in mobile
image processing [32] as an image enhancement technique.
To smooth results for image segmentation tasks, Gadde et
al. [33] propose bilateral inception module which is used
as a layer inserted between existing convolution layers
and does not affect the convolution process explicitly. Our
bilateral convolutional layer is different from theirs [33] in
several aspects. First, bilateral inception is added to existing
CNN layers while we directly modify CNN layers; second,
bilateral inception is only used as the subsequent layer of
CNN layers while we use bilateral convolutional structures
for all layers; third, bilateral inception is limited to bilateral
filtering (i.e. only considering color differences) while our



SUBMITTED TO IEEE TVCG 3

x

nx

ny

θx

θy

d

y

Fig. 2. Illustration of the geometry term.

layer is used for joint bilateral filtering.
Jampani et al. [34] introduced bilateral filters onto CNN

layers based on a sparse high dimensional permutohedral
lattice data structure. The permutohedral lattice is defined
in the feature space, which is usually a 5D space combining
both 2D positions and 3D colors. To apply a bilateral filter
to an input image, 3 steps are involved. First, they splat the
values of each pixel into its enclosing lattice points. Second,
they convolve the values on the lattice. Finally, they retrieve
back the values of each pixel from its enclosing lattice points
through interpolation. They also derived gradients for the
filter weights, hence the filter weights could be end-to-end
trained through backpropagation. However, their method
is too slow to be used in real-time/interactive rendering
applications.

3 DESIGN PRINCIPLES

Our goal is to generate indirect illumination from only direct
illumination and auxiliary features of the 3D scene (i.e., G-
buffers) using neural networks. To achieve interactive per-
formance, we need to keep our neural network lightweight.
Below, we will review the light transport of indirect illumi-
nation, to help decide which auxiliary features to choose as
input to the network.

To make the problem simpler, we assume the BRDFs of
all scene objects are diffuse, and we only consider single-
bounce indirect illumination. As shown in Fig. 2, the single-
bounce indirect illumination at a shading point x could be
written as an integration of direct-to-indirect light transport:

Lo(x) ∝
∫
Ld(y→ x)V (y→ x)G(y→ x) dy. (1)

This is an integration over all surface points y (reflector) in
the scene, where Ld denotes direct illumination contribution
received at y, V is the visibility between y to the shading
point x, and G = (cos θx cos θy)/d

2 is known as the geome-
try term. Note that, the exitant direction and the BRDF of x
are both omitted since we assume diffuse BRDFs.

Taking a closer look at the geometry term G in Fig. 2, we
immediately find that the two cosine terms are related to the
angles between the incident direction that connects x and y
and the surface normals at x and y, respectively. Besides,
the distance d between x and y also significantly affects the
result.

The observation of the geometry term G above leads to
two immediate conclusions. First, we do need the per-pixel
surface normals to determine how closely faced two pixels

9

16

32

64

32

16

3

Albedo

Pos./Normal

Direct Illum.

Demodulated
Indirect Illum.

Indirect Illum.

Fig. 3. The architecture of our neural network. Note that all layers in
the encoder and the decoder are bilateral convolutional layers. Skip
connections are marked by dashed lines between corresponding layers.
Direct illumination, normal and camera space 3D positions are fed to the
neural network as input. The output demodulated indirect illumination is
multiplied by the albedo to obtain the final indirect illumination.

are. Second, since the contribution of indirect illumination is
determined by the world space distance between two pixels,
it is important to provide the actual 3D positions to each
pixel as a position buffer. Besides, depths are still important
for determining discontinuities. Instead of introducing an
additional depth buffer, we modify our position buffer such
that the 3D positions are stored in canonical/camera space.
In this way, we can easily obtain the depth (which is the z
component of the 3D position) and still able to compute the
world space distance between two pixels.

Now we take a look at the direct illumination term
Ld, which is the primary input of our method. Note that
different y may have different textures/albedos and maybe
shadowed or not, and these differences will all affect the
direct-to-indirect transport onto x as part of the Ld. Hence,
we do not need to separate textures, shadows from direct
illumination, and we directly use full direct illumination
as input. On the output side, we follow irradiance filter-
ing works [35] to decouple shading from texture/albedo.
Specifically, we predict the demodulated (texture/albedo
removed) indirect illumination. This is because the de-
modulated indirect illumination is usually more smooth,
and more importantly, the final indirect illumination can
be correctly computed by a simple multiplication of the
demodulated indirect illumination with the albedo at every
shading point x.

Summarization. With the above theoretical analysis, the
input to our neural network includes: full direct illumi-
nation (with textures and shadows), surface normals and
camera space 3D positions. The output is the demodulated
indirect illumination (without multiplying albedo).

4 OUR APPROACH

In this section, we will discuss the architecture of our
network and the loss function used to train our network.

As discussed in Sec. 3, the distance d between two
points y and x significantly affects the indirect illumination
contribution from y to x. To encode the effect of distance
d, a possible choice is to use standard convolutional layers
and implicitly encode such relationships into the network
through parameter training. However, this will potentially
result in a complex and deep network that cannot achieve
interactive framerates. Instead, we introduce bilateral convo-
lutional layers, to explicit encode the effect of distance d.



SUBMITTED TO IEEE TVCG 4

4.1 Bilateral convolutional layers

A traditional convolutional layer is generally defined as:

Iout(i) = Iin(i)⊗W (i, j), (2)

where i and j are different locations on a 2D image, ⊗
denotes the convolution operator, W is the convolution
kernel. Iin and Iout denote the input and output images of
the layer, respectively.

We modify the above equation by explicitly taking depth
into account:

Iout(i) = Iin(i)⊗
(
W (i, j)� exp

(
−(zi − zj)2/σ2

))
, (3)

where � denotes element-wise multiplication, zi and zj are
the depth values at i and j, respectively, and σ is a parameter
to control the influence of depth.

In Equation 3, the original kernel weights W are mod-
ulated by a Gaussian that takes account depth differences,
similar to applying joint bilateral filtering [36], [37] using
depth as guidance. Hence, we name our modified convo-
lutional layer as a bilateral convolutional layer. Recall that
the input 3D positions are stored in camera space so that
the depth values could be directly obtained from the z-
component of the 3D position. The intuitive motivation of
our bilateral convolutional layers is to remove the influence
of neighboring pixels with a large depth difference.

In our implementation, we fix the parameter σ = 1. We
have tried other parameter settings. For example, set the
value of σ to be higher for deeper layers, or set it as an
unknown parameter and let the network learn it. The results
do not differ much.

4.2 Bilateral convolutional neural networks

Now we incorporate the newly introduced bilateral convo-
lution layers to design the architecture of our bilateral con-
volutional neural networks (BCNNs). As shown in Fig. 3,
our network uses a U-Net architecture, with 3 encoder layers
and 3 decoder layers. For each layer, we replace the original
convolutional layer with our bilateral convolutional layer
(Sec. 4.1). That is, each layer in our network applies bilateral
convolution to the output of the previous layer, then passes
through the pooling function as input of the subsequent
layer. The output of each layer in the encoder will also be
passed through a skip connection to the corresponding layer
in the decoder.

In our implementation, all convolutions have a kernel
size of 3×3. Since our bilateral convolutional layer is not
a built-in layer in PyTorch, we implemented as a Pytorch
extension module, according to Equation 3. The activation
layers consist of leaky ReLUs as described by Maas et
al. [38], which multiply negative values by a small constant
instead of zero.

We concatenate information from our G-buffers (normals
and camera space 3D positions) with direct illumination
and treat them together as the input channels of the net-
work.Note that the albedo buffer is not used as an input
channel, but directly multiplied by the output to get the
final indirect illumination.

Content
Loss

𝑥"#$

𝑥"

Our Bilateral 

Convolutional 

Neural Network 𝑦"

𝑦"#$

Temporal
Loss

Optical Flow

𝑔"

𝑔"#$

Edge
Loss

Input Direct Illumination Indirect Illumination Ground Truth

Fig. 4. Loss function. In the training process, adjacent frames will be fed
to the network at the same time to maintain the coherence in rendered
frames. In the inference process, the network only takes one frame (the
current frame) as input and still preserves temporal coherence.

Fig. 5. Examples from our training set. We show global illumination (i.e.,
direct + single-bounce indirect) for each example. Scene materials are
randomly assigned.

4.3 Temporal coherence and loss function

Neural networks based methods generally give approxi-
mate solutions to the rendering equation, which is prone
to bias. This is usually perceived as temporal flickering
artifacts, even with a small amount of adjustment on camera
poses and lighting conditions. Since we aim at dynamic
scenes, we need to guarantee temporal coherence between
adjacent frames. For better runtime performance, we do not
use a recurrent structure such as RNN or LSTM. Instead,
inspired by recent video processing works [15], we force
the neural network to minimize temporal differences after
considering optical flow during the training stage. In this
way, our method maintains temporal coherence and remains
lightweight.

Our loss function L is defined as the weighted sum
of three terms: a content loss Lc, an edge loss Le and a
temporal loss Lt:

L = ωcLc + ωeLe + ωtLt, (4)

where ωc, ωe and ωt are weights to control the relative
contributions of different terms. We use ωc = 0.7, ωe = 0.1
and ωt = 0.2 in our implementation, which makes a good
trade-off between convergence and quality. The content
loss and edge loss are used to constrain the network to
produce results close to the ground truth. Specifically, the
content loss Lc is computed as the SSIM difference between
our output and the ground truth, and the edge loss Le is
computed as the L1 difference between the output and the
ground truth after applying a Laplacian filter. The temporal
loss Lt is used to maintain the coherence between adjacent



SUBMITTED TO IEEE TVCG 5

Fig. 6. Our rendering pipeline. We use OpenGL rasterization to generate both high-resolution (i.e., 1024 × 768) and low-resolution (i.e., 512 ×
384) direct illumination with associated G-buffers. The low-resolution direct illumination and associated G-buffers are fed into our neural network
to produce low-resolution demodulated indirect illumination. High-resolution normal/albedo maps are used to generate high-resolution indirect
illumination through joint bilateral upsampling and albedo modulation. We then add the upsampled indirect illumination with the high-resolution
direct illumination, and further apply Temporal Anti-Aliasing (TAA) to obtain the final high-resolution global illumination results.

frames, and is defined as the L1 difference between two
consecutive outputs using optical flow:

Lt = ‖fwarp(yt−1)− yt‖1, (5)

where yt−1, yt represents the outputs of two consecutive
frames, and fwarp indicates the warping obtained by op-
tical flow, which is used to eliminate the motion between
the two frames. We use the TV-L1 algorithm [39] to calculate
the optical flow of adjacent frames.

As shown in Figure 4, during training, our network
accepts a pair of temporally consecutive frames xt−1 and
xt, both containing only the direct illumination. The two
frames are fed into the networks separately, and produce
two output images yt−1 and yt, which are the predicted
indirect illumination. We then use Equation 5 to compute
the temporal loss and then the final loss (Equation 4).

Note that during runtime, our network takes only one
frame as input, and no optical flow computation is needed.
Consequently, there is no runtime overhead to maintain
temporal coherence.

5 IMPLEMENTATION DETAILS

In this section, we explain details on data generation
(Sec. 5.1), network training (Sec. 5.2), and the runtime ren-
dering pipeline (Sec. 5.3). We start by scaling each scene,
setting its longest edge of its bounding box to 40 units, in
order to ensure all scenes have similar scales.

5.1 Data generation
As described in Sec. 4.3, we need adjacent frames for train-
ing. Hence, our training dataset is composed of pairs of
consecutive frames. Each pair includes two frames rendered
with slightly changed camera position or orientation. Each
frame includes the direct illumination, associated G-buffers
(normals, camera space 3D positions, and albedos), and
the ground truth single-bounce indirect illumination. All of
them are generated without anti-aliasing. To avoid overfit-
ting, the training dataset should be large and representative.

Hence, we have collected 92 complex scenes. For each scene,
we further randomly sample about two thousand cameras.
For each sampled camera, we generate another camera by
randomly and slightly changing its position or orientation
for pairing. We then render two frames of the scene from the
two cameras using path tracing with NVIDIA OptiX [40].
All images are rendered with a resolution of 512× 384 with
2048 to 4096 spps. Rendering of one single frame takes about
40 to 100 seconds. To further increase diversity, we render
the scenes with random material colors.

After that, we manually check all frames and discard
unsatisfactory ones (For example, those rendered under
cameras very close to a scene object). In total, 47,332 pairs of
frames are collected as training data.

Our dataset provides sufficient variations of global illu-
mination effects such as soft shadow and color bleeding.
Besides moving cameras, our dataset also includes dynamic
lighting. The variety of our dataset enables our neural net-
work to predict indirect illumination for complex scenes and
to handle moving cameras, dynamic lighting, and moving
objects as well.

5.2 Training

Training of our network is implemented using PyTorch on
a server with 4 NVIDIA GeForce GTX 1080Ti GPUs. The
training process takes 1000 epochs and 125 hours in total.
The trained network occupies about 1.5G memory.

In the training process, we use Xavier initialization [41]
to initialize the weights in our network. We use batch size
of 8 and Adam optimizer [42] with learning rate 0.0001 and
momentum 0.9 and decay weights 0.95 for back propaga-
tion. As Maas et al. [38] suggested, we use leaky ReLUs with
α = 0.1 instead of linear ReLUs in our implementation.
Recall that in our training process, two adjacent frames
are fed to the network to guarantee temporal coherence.
However, in the inference stage, only a single frame is taken
as input, and temporal coherence can still be maintained.



SUBMITTED TO IEEE TVCG 6

Input Direct Illum. Our Global Illum. Direct SSDO D. Shad. Ours Ref.
Bi

st
ro

1 - SSIM/RMSE: 0.192/23.5 0.190/23.4 0.185/50.9 0.075/22.2

Si
be

ni
k

1-SSIM / RMSE: 0.232/30.3 0.223/19.1 0.190/16.1 0.183/12.3

Su
n

Te
m

pl
e

1-SSIM / RMSE: 0.321/34.8 0.308/33.7 0.196/12.8 0.189/13.7

Li
vi

ng
R

oo
m

1-SSIM / RMSE: 0.786/ 78.9 0.769/77.9 0.200/31.6 0.166/30.3

Fig. 7. Comparison of our method with different rendering methods and reference global illumination generated by path tracing. For each scene, from
left to right, we provide the input direct illumination, our global illumination result, rendering closeups of direct illumination, SSDO, deep shading, our
method, and reference, respectively. We also provide the error of rendering result by each method using metrics including SSIM (left) and RMSE
(right). Compared to SSDO and deep shading, our method achieve results with the best visual quality and with the lowest quantitative errors.

5.3 Rendering pipeline

Once our network is trained, we integrate it into a raster-
ization pipeline, where each image is processed immedi-
ately during runtime after being rendered. In this way, our
method could be easily combined with existing real-time
rendering methods. The whole pipeline is shown in Fig. 6.

We use OpenGL to generate direct illumination along
with the G-buffers, including both high-resolution (i.e.,
1024×768) and low-resolution (i.e., 512×384) ones. In prac-
tice, the low-resolution images do not need to be rasterized
again. They are simply downsampled from high-resolution
ones, therefore taking negligible time to be generated. In our
implementation, for demonstration purposes, direct illumi-
nation is computed using a few point lights or directional

lights. Soft shadows are calculated using the percent closer
soft shadow (PCSS) algorithm [43]. More direct illumination
effects could be easily included by applying more sophisti-
cated direct illumination algorithms.

The low-resolution direct illumination and G-buffers
are immediately forwarded as the input of our network.
Data conversion is required between OpenGL and our net-
work since they use different data formats (i.e., OpenGL
framebuffer objects and CUDA arrays). Fortunately, the
conversion between them is simply a pointer redirec-
tion/reinterpretation inside the GPU, so there is no actual
data transferring.

We incorporate joint bilateral upsampling [44], [45],
guided by the high-resolution normal map, to scale up the



SUBMITTED TO IEEE TVCG 7

TABLE 1
Performance Table. For each scene, from left to right, we provide the
name, the number of vertices, rendering frame rates, time breakdown

for direct illumination, network inference, and post-processing,
respectively.

scene #vert. fps dir.tm. inf. tm. post. tm.
Bistro 8.4M 36.7 8.0ms 18.2ms 1.0ms
Chess 128k 48.2 1.5ms 18.2ms 0.9ms
Classroom 311k 46.9 1.2ms 19.2ms 0.9ms
Conference 194k 47.6 2.1ms 17.9ms 1.0ms
Gallery 499k 45.6 2.9ms 18.1ms 0.9ms
Pinkroom 2.4M 45.3 2.7ms 18.4ms 1.0ms
Living Room 342k 44.6 3.1ms 18.3ms 1.0ms
Living Room 2 4.1M 41.7 4.7ms 18.2ms 1.1ms
Sibenik 2.3M 41.9 4.2ms 18.4ms 1.1ms
Staricase 320k 48.4 1.3ms 18.3ms 1.0ms
Sun Temple 1.8M 25.4 20.7ms 17.7ms 1.0ms

output of neural networks (i.e., the demodulated indirect
illumination). It is further modulated by the high-resolution
albedo map and added with high-resolution direct illumi-
nation to produce high-resolution (i.e., 1024 × 768) global
illumination results.

Note that we use joint bilateral upsampling on the
output of our neural network instead of training an end-
to-end neural network that includes the upsampling step
or another standalone upsampling network. This is because
the joint bilateral upsampling is demonstrated to be much
faster (<1 ms) than neural network upsampling solutions
[31], [46] (>20 ms), thus is better suited for our interactive
requirements.

Recall that we use aliased direct illumination and G-
buffers during training in order to avoid ambiguities of
physical parameters within each pixel. Feeding these aliased
inputs into our neural network will result in aliased global
illumination results. To deal with the aliasing issue, we
apply temporal anti-aliasing (TAA) [47] to our final global
illumination results. It uses fast but accurately calculated
motion vectors to find corresponding pixels in the previous
frame, and accumulate the information from the previous
frame to the current one.

6 RESULTS AND EVALUATIONS

We implement our rendering system on a PC with an
NVIDIA RTX2080 graphics card with 12GB video memory
and test it on a variety of scenes. For all test scenes, as
described in Sec. 5.3, we generate indirect illumination with
a resolution of 512 × 384, upsample it to a resolution of
1024× 768, then sum it with direct illumination to produce
the final global illumination. Note that none of the test
scenes appear in the set of training scenes. Some of the
scenes are from [48], [49].

The statistics and performance data of all scenes are
given in Table 1. Our method achieves interactive perfor-
mance for a majority of scenes, e.g. 36.7 fps for scene Bistro
containing 8.4M vertices. Thanks to our lightweight network
architecture, the time for network inferencing is very stable,
taking around 18ms for all scenes with different complexity.

6.1 Comparisons and Results
In Fig. 7, we show global illumination results of our meth-
ods for various scenes. Those scenes are all challenging

scenes for global illumination rendering. The Bistro scene
(Fig. 7 first row) is a complex outdoor scene. It is illuminated
by a directional light that casts sharp shadows. Our method
successfully predicts indirect illumination in the shadowed
areas. For complex indoor scenes like Sibenik (Fig. 7 second
row), our method can produce the color bleeding effects
from the red floor to the back wall. The Sun Temple scene
(Fig. 7 third row) contains a glossy statue. Although our
method is designed to handle diffuse indirect illumination,
it could also be applied to low-frequency glossy scenes
without noticeable artifacts. The Living Room scene (Fig. 7
fourth row) is an indoor scene illuminated by a point
light. This scene contains large shadowed areas from direct
illumination. Our method produces satisfactory results with
the help of our bilateral convolution layers.

For comparison, Fig. 7 also provides the reference gener-
ated by path tracing and the rendered results of other screen
space methods, including SSDO [2] and Deep Shading [1].
We have also measured the difference between the result
of each method and the reference using various metrics,
including SSIM and RMSE. Overall, our method is superior
to alternative methods in terms of both visual quality and
quantitative metrics. Compared to SSDO, which is limited
to generating indirect illumination in a local range, our
method can produce non-local effects. Compared to deep
shading, our method generates much cleaner global illumi-
nation with fewer artifacts. A convincing comparison is the
Living Room scene (Fig. 7 fourth row). In this case, it is
very difficult for screen space methods to produce plausible
indirect illumination, since the values of direct illumination
are mostly zero in a large area on the screen. SSDO generates
little indirect contribution to this area, and deep shading
introduces artifacts in the dark shadow areas near the image
border. In contrast, our method produces results with much
higher quality. Besides, our method also maintains much
better temporal coherence.

Fig. 8 compares the indirect illumination component
between our method and the reference. Our method pro-
duces plausible results. However, when looking at the fig-
ure closely, we could still notice subtle visual differences
between the indirect illumination results of our method and
reference. We believe such differences are hard to eliminate
using screen space methods.

As shown in Fig. 9, our method is able to handle dy-
namic scenes well with moving cameras, dynamic lights,
and moving objects. Please see the supplemental video to
verify that our rendered sequences preserve nice temporal
coherence.

6.2 Evaluations

In this subsection, we will evaluate the design choices in our
method, including bilateral convolution layers, loss function
and input G-buffers.
Bilateral convolutional layers. In Fig. 10, we further com-
pare the results of our bilateral convolutional neural net-
works (BCNNs) and those generated by traditional CNNs.
Both networks use the same settings and are trained using
the same dataset, except that BCNNs use our proposed
bilateral convolutional layers while CNNs use traditional
convolutional layers. From the results, we can find that



SUBMITTED TO IEEE TVCG 8

Direct Illum. Our Indirect Illum. Ref. Indirect Illum. Our Global Illum. Ref. Global Illum. Diff. Global Illum.
C

on
fe

re
nc

e 1

0

G
al

le
ry

1

0

Fig. 8. Comparison of indirect illumination results between our method and the reference global illumination generated by path tracing. For each
scene, from left to right, we provide the input direct illumination, our indirect illumination, reference indirect illumination, our global illumination,
reference global illumination, and the difference image between our global illumination and the reference, respectively.

traditional CNNs easily produce noticeable artifacts, i.e.,
incorrect colors in shadow areas and blurring around object
boundaries. This is because traditional CNNs cannot learn
well on how to handle depth differences when we restrict
the network to be lightweight (i.e., with a limited number
of layers). In contrast, our bilateral convolutional layers
explicitly take depth into account thus produces higher-
quality results without easily noticeable artifacts.

Now we explain why we do not use the existing lat-
tice based bilateral convolution method [34]. While their
method has shown nice results in tasks like CRF inference,
image segmentation, and character recognition, it is not
suited for real-time/interactive graphics applications. This
is because their method is rather slow while rendering
requires real-time/interactive feedbacks. The computations
in their method are complex, involving three non-trivial
computation steps (i.e., splatting, convolution and slicing)
on the high-dimensional lattice for applying bilateral filter-
ing to a single layer. In contrast, our method runs much
faster since our network structure is much more lightweight.
Our bilateral convolution operator (Equation 3) just adds a
depth-aware element-wise multiplication to the traditional
convolution operator (Equation 2), which incurs little addi-
tional cost. Another possible issue of their method lies in
that it may be harder to maintain temporal coherence. Since
the sparse structure of the permutohedral lattice is con-
structed according to input image features, adjacent frames
will probably generate permutohedral lattices with different
structures, which in turn lead to temporally inconsistent
results. In contrast, our method is able to preserve nice
temporal coherence.
Metric choices for the content loss. The content loss term
Lc in our training loss function (Equation 4) is used to
constrain that the final predicted indirect illumination does
not differ much from the ground truth. To compute the
difference, we may use various metrics, such as L1, L2,
and SSIM. Deep shading [1] has demonstrated that the L2
metric is not appropriate since it will lead to blurry results.
As shown in Fig. 11, we have experimented three different
metrics (i.e., L1, SSIM, and L1+SSIM) to find out which one
is the best choice. The results demonstrate that ‘using L1
only’ or ‘using L1+SSIM’ could easily produce color-shifting
artifacts in dark areas, but ‘using SSIM only’ produces the

best perceived visual quality. Hence, we use the SSIM metric
to compute the content loss.
Input maps to the network. As discussed in Sec. 3, the input
to our network includes full direct illumination and two
auxiliary G-buffers of normals and 3D positions. We have
conducted an ablation study to validate the effectiveness
of the two auxiliary maps. We have tested four different
settings: with both normals and 3D positions, only with
normals, only with 3D positions, and without any auxiliary
maps. As shown in Fig. 12, the training loss decreases fastest
when both normals and 3D positions are taken as input
maps (the red curve).

7 DISCUSSION AND FAILURE CASES

Multiple bounces. Although our method is designed for
single-bounce diffuse indirect illumination, it could also be
easily extended to handle multiple bounces. One way to do
so is to repeatedly apply our neural network to predict the
next bounce by using the information of the current bounce
as input. However, since our method does not explicitly
guarantee energy conservation in the prediction, it may
produce results that are too bright (Fig. 13 (c)). This problem
could be alleviated by attenuating the brightness of each
bounce with a predefined attenuation factor. As shown in
Fig. 13 (d), we use an attenuation factor of 50%, and the
overall brightness is now much closer to reference. Another
way is to re-train the network with the same architecture,
but using multi-bounce indirect illumination instead of
single-bounce indirect illumination as training data. Such
an example is shown in Fig. 13 (e). Its quality is slightly
lower than Fig. 13 (d), but it does not need any manually
provided hyperparameters.
Failure cases. Fig. 14 shows several failure cases of our
method. In the Sponza scene, our method produces darker
indirect illumination in the area above the gate compared
to the reference. This is because the direct illumination in
this area is almost entirely in shadow, and it is very hard
to predict indirect illumination accurately in such cases. In
the Torus scene, our method fails to handle highly specular
and refractive objects since it violates our diffuse BRDF
assumption.



SUBMITTED TO IEEE TVCG 9

Bi
st

ro
(M

ov
in

g
C

am
er

a)
Pi

nk
R

oo
m

(D
yn

am
ic

Li
gh

t)
C

he
ss

(M
ov

in
g

O
bj

ec
ts

)

Fig. 9. Our method can produce high-quality global illumination for dynamic scenes under different settings. Top row: moving camera; middle row:
dynamic light; bottom row: moving objects. For each scene, we pick up three frames from the rendered sequences.

8 CONCLUSION

We have proposed an interactive screen space method for
single-bounce diffuse global illumination. The core of our
method is a lightweight neural network. It takes full direct
illumination and two auxiliary G-buffers of normals and
3D positions as input, and predicts single-bounce ndirect
illumination. In order to explicitly take depth differences
into account, we introduced bilateral convolutional layers
in our networks. To maintain temporal coherence efficiently,
we incorporated an optical flow based temporal loss during
network training. We integrate our neural network into an
OpenGL framework and demonstrate that we can produce
high-quality global illumination at a resolution of 1024×768
for dynamic scenes in interactive framerates.

As future works, we would like to extend our method
from screen space to world space, so that hidden surfaces
could also contribute to indirect illumination computations.
We are also interested in extending our method to deal with
participating media. Furthermore, handling highly glossy
interreflections is another worthwhile future direction to
explore.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Project Number 61822204, 61521002),
a research grant from the Beijing Higher Institution Engi-
neering Research Center.

REFERENCES

[1] O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and
T. Ritschel, “Deep shading: Convolutional neural networks for
screen space shading,” Comput. Graph. Forum, vol. 36, no. 4, pp.
65–78, 2017.

[2] T. Ritschel, T. Grosch, and H.-P. Seidel, “Approximating dynamic
global illumination in image space,” in Proceedings of I3D, 2009,
pp. 75–82.

[3] J. F. Blinn and M. E. Newell, “Texture and reflection in computer
generated images,” Commun. ACM, vol. 19, no. 10, pp. 542–547,
1976.

[4] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “In-
teractive indirect illumination using voxel cone tracing,” Computer
Graphics Forum, vol. 30, no. 7, pp. 1921–1930, 2011.

[5] id Software, “Quake,” https://github.com/id-Software/Quake-
III-Arena, 1999.

[6] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting envi-
ronments,” ACM Trans. Graph., vol. 21, no. 3, pp. 527–536, 2002.

[7] X. Sun, K. Zhou, Y. Chen, S. Lin, J. Shi, and B. Guo, “Interactive
relighting with dynamic brdfs,” ACM Trans. Graph., vol. 26, no. 3,
pp. 27:1–27:10, 2007.



SUBMITTED TO IEEE TVCG 10

Input Direct Illum. CNNs Our BCNNs Direct CNNs BCNNs
St

ar
ic

as
e

Pi
nk

R
oo

m

Fig. 10. Comparison the results of our BCNNs with traditional CNNs. Traditional CNNs easily produce noticeable artifacts, i.e., incorrect colors in
shadow areas and blurring around object boundaries. By contrast, our BCNNs produce higher quality results without artifacts.

Direct Illumination L1 L1 + SSIM SSIM

Su
n

Te
m

pl
e

Li
vi

ng
R

oo
m

2

Fig. 11. Comparisons of different metrics in computing the content loss term (Equation 4). ‘Using L1 only’ or ‘using L1+SSIM’ are easy to introduce
color-shifting artifacts in dark areas. ‘Using SSIM only’ generates results with the best visual quality.

[8] P. Ren, J. Wang, M. Gong, S. Lin, X. Tong, and B. Guo, “Global illu-
mination with radiance regression functions,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 130:1–130:12, 2013.

[9] M. Hašan, F. Pellacini, and K. Bala, “Direct-to-indirect transfer for
cinematic relighting,” ACM Trans. Graph., vol. 25, no. 3, pp. 1089–
1097, 2006.

[10] A. Silvennoinen and J. Lehtinen, “Real-time global illumination by
precomputed local reconstruction from sparse radiance probes,”
ACM Trans. Graph., vol. 36, no. 6, pp. 230:1 – 230:13, 2017.

[11] L.-Q. Yan, S. U. Mehta, R. Ramamoorthi, and F. Durand, “Fast 4d
sheared filtering for interactive rendering of distribution effects,”
ACM Trans. Graph., vol. 35, no. 1, pp. 7:1–7:13, 2015.

[12] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya,
J. Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi, “Spa-
tiotemporal variance-guided filtering: Real-time reconstruction for
path-traced global illumination,” in Proceedings of High Performance
Graphics, 2017, pp. 2:1–2:12.

[13] S. Bako, T. Vogels, B. Mcwilliams, M. Meyer, and F. Rousselle,
“Kernel-predicting convolutional networks for denoising monte
carlo renderings,” Acm Trans. Graph., vol. 36, no. 4, pp. 97:1–97:14,
2017.

[14] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, and
T. Aila, “Interactive reconstruction of monte carlo image sequences
using a recurrent denoising autoencoder,” Acm Trans. Graph.,
vol. 36, no. 4, pp. 98:1–98:12, 2017.

[15] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu, Z. Li, and
W. Liu, “Real-time neural style transfer for videos,” in Proceedings
of IEEE CVPR, 2017, pp. 7044–7052.

[16] S. Kallweit, T. Müller, B. McWilliams, M. Gross, and J. Novák,
“Deep scattering: Rendering atmospheric clouds with radiance-
predicting neural networks,” ACM Trans. Graph., vol. 36, no. 6, pp.
23:1–23:11, 2017.

[17] W. Yang, J. Feng, J. Yang, F. Zhao, J. Liu, Z. Guo, and S. Yan,
“Deep edge guided recurrent residual learning for image super-
resolution,” IEEE Transactions on Image Processing, vol. 26, no. 12,
pp. 5895–5907, 2017.

[18] Nvidia, “Deep learning super sampling,”
https://developer.nvidia.com/rtx/ngx, 2018.

[19] C. Dachsbacher and M. Stamminger, “Reflective shadow maps,”
in Proceedings of I3D, 2005, pp. 203–231.

[20] P. Shanmugam and O. Arikan, “Hardware accelerated ambient
occlusion techniques on gpus,” in Proceedings of I3D, 2007, pp. 73–



SUBMITTED TO IEEE TVCG 11

Fig. 12. Training loss concerning the number of training iterations when
different combinations of auxiliary G-buffers are taken as input. Blue
curve: without any auxiliary maps; orange curve: only with 3D positions;
green curve: only with normals; red curve: with both normals and 3D
positions. The training loss decreases fastest when both normals and
3D positions are taken as input.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Our method could be extended to handle multiple bounces. (a)
direct illumination; (b) single-bounce indirect illumination; (c) 4-bounce
indirect illumination without attenuation; (d) 4-bounce indirect illumina-
tion with attenuation; (e) re-trained with multi-bounce dataset; (f) multi-
bounce reference.

Direct Illumination Ours Reference

Sp
on

za
To

ru
s

Fig. 14. Failure cases of our method.

80.
[21] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural

networks,” in Proceedings of IEEE CVPR, 2018, pp. 7794–7803.
[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[23] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85 – 117, 2015.
[24] S. U. Mehta, B. Wang, R. Ramamoorthi, and F. Durand, “Axis-

aligned filtering for interactive physically-based diffuse indirect

lighting,” ACM Trans. Graph., vol. 32, no. 4, pp. 96:1–96:12, 2013.
[25] B. Moon, J. A. Iglesias-Guitian, S.-E. Yoon, and K. Mitchell, “Adap-

tive rendering with linear predictions,” ACM Trans. Graph., vol. 34,
no. 4, pp. 121:1–121:11, 2015.

[26] J. Munkberg, J. Hasselgren, P. Clarberg, M. Andersson, and
T. Akenine-Möller, “Texture space caching and reconstruction for
ray tracing,” ACM Trans. Graph., vol. 35, no. 6, pp. 249:1–249:13,
2016.

[27] Z. Majercik, J.-P. Guertin, D. Nowrouzezahrai, and M. McGuire,
“Dynamic diffuse global illumination with ray-traced irradiance
fields,” Journal of Computer Graphics Techniques (JCGT), vol. 8, no. 2,
pp. 1–30, 2019.

[28] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
image denoising,” in Proceedings of IEEE CVPR, vol. 2. IEEE,
2005, pp. 60–65.

[29] B. Bitterli, F. Rousselle, B. Moon, J. A. Iglesias-Guitián, D. Adler,
K. Mitchell, W. Jarosz, and J. Novák, “Nonlinearly weighted first-
order regression for denoising monte carlo renderings,” Computer
Graphics Forum, vol. 35, no. 4, pp. 107–117, 2016.

[30] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya,
J. Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi, “Spa-
tiotemporal variance-guided filtering: Real-time reconstruction for
path-traced global illumination,” in Proceedings of High Performance
Graphics, 2017, pp. 2:1–2:12.

[31] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep joint image
filtering,” in Proceedings of ECCV, 2016, pp. 154–169.

[32] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand,
“Deep bilateral learning for real-time image enhancement,” ACM
Trans. Graph., vol. 36, no. 4, pp. 118:1–118:12, 2017.

[33] R. Gadde, V. Jampani, M. Kiefel, D. Kappler, and P. V. Gehler,
“Superpixel convolutional networks using bilateral inceptions,”
in Proceedings of ECCV, 2016, pp. 597–613.

[34] V. Jampani, M. Kiefel, and P. V. Gehler, “Learning sparse high
dimensional filters: Image filtering, dense crfs and bilateral neural
networks,” in Proceedings of IEEE CVPR, 2016, pp. 4452–4461.

[35] J. Kontkanen, J. Räsänen, and A. Keller, “Irradiance filtering for
monte carlo ray tracing,” in Monte Carlo and Quasi-Monte Carlo
Methods, 2004, pp. 259–272.

[36] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proceedings of ICCV, 1998, pp. 839–846.

[37] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image
pairs,” ACM Trans. Graph., vol. 23, no. 3, pp. 664–672, 2004.

[38] A. Maas, A. Hannun, and A. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” in Proceedings of ICML, 2013,
p. 3.

[39] C. Zach, T. Pock, and H. Bischof, “A duality based approach for
realtime tv-l1 optical flow,” in Joint Pattern Recognition Symposium,
2007, pp. 214–223.

[40] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and
M. Stich, “Optix: A general purpose ray tracing engine,” ACM
Trans. Graph., vol. 29, no. 4, pp. 66:1–66:13, 2010.

[41] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics, vol. 9, 2010,
pp. 249–256.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015.

[43] R. Fernando, “Percentage-closer soft shadows,” in ACM SIG-
GRAPH 2005 Sketches, 2005, p. 35.

[44] P.-P. Sloan, N. K. Govindaraju, D. Nowrouzezahrai, and J. Snyder,
“Image-based proxy accumulation for real-time soft global illumi-
nation,” in Proceedings of PG, 2007, pp. 97–105.

[45] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint
bilateral upsampling,” ACM Trans. Graph., vol. 26, no. 3, pp. 96:1–
96:6, 2007.

[46] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-
resolution using very deep convolutional networks,” in Proceed-
ings of IEEE CVPR, 2016, pp. 1646–1654.

[47] B. Karis, “High-quality temporal supersampling,” in Advances in
Real-Time Rendering in Games, SIGGRAPH Courses, 2014.

[48] B. Bitterli, “Rendering resources,” 2016, https://benedikt-
bitterli.me/resources/.

[49] M. McGuire. (2017, July) Computer graphics archive. [Online].
Available: https://casual-effects.com/data



SUBMITTED TO IEEE TVCG 12

Hanggao Xin is a PhD student in the Depart-
ment of Computer Science and Technology, Ts-
inghua University. He received his bachelor de-
gree from the same university in 2018. His re-
search interests include realistic rendering and
real-time ray tracing.

Shaokun Zheng is a senior undergraduate stu-
dent in the Department of Computer Science
and Technology, Tsinghua University. His re-
search interests include realistic rendering and
real-time ray tracing.

Kun Xu is an associate professor in the De-
partment of Computer Science and Technology,
Tsinghua University. Before that, he received
his bachelor and doctor degrees from the same
university in 2005 and 2009, respectively. His
research interests include realistic rendering and
image/video editing.

Ling-Qi Yan is an assistant professor of Com-
puter Science at UC Santa Barbara, co-director
of the MIRAGE Lab, and affiliated faculty in the
Four Eyes Lab. Before that, he received his
doctor degree from the Department of Electri-
cal Engineering and Computer Sciences at UC
Berkeley and obtained his bachelor degree in
Computer Science from Tsinghua University. His
research interests include physically-based ren-
dering, real-time ray tracing and realistic appear-
ance modeling.


