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Fig. 1. We propose an unsupervised deep neural network (GradNet) for reconstructing high-quality images from noisy base images and the corresponding

image gradients generated by gradient-domain renderers. Even with unlabeled training data, our network can still reproduce noise-free images closely

matching the references.

Monte Carlo (MC)methods for light transport simulation are flexible and gen-

eral but typically suffer from high variance and slow convergence. Gradient-

domain rendering alleviates this problem by additionally generating image

gradients and reformulating rendering as a screened Poisson image recon-

struction problem. To improve the quality and performance of the recon-

struction, we propose a novel and practical deep learning based approach in

this paper. The core of our approach is a multi-branch auto-encoder, termed
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GradNet, which end-to-end learns a mapping from a noisy input image and

its corresponding image gradients to a high-quality image with low variance.

Once trained, our network is fast to evaluate and does not require manual

parameter tweaking. Due to the difficulty in preparing ground-truth images

for training, we design and train our network in a completely unsupervised

manner by learning directly from the input data. This is the first solution in-

corporating unsupervised deep learning into the gradient-domain rendering

framework. The loss function is defined as an energy function including a

data fidelity term and a gradient fidelity term. To further reduce the noise of

the reconstructed image, the loss function is reinforced by adding a regular-

izer constructed from selected rendering-specific features. We demonstrate

that our method improves the reconstruction quality for a diverse set of

scenes, and reconstructing a high-resolution image takes far less than one

second on a recent GPU.
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1 INTRODUCTION

In many fields including movie production [Keller et al. 2015] and

architecture/product visualization [Křivánek et al. 2018], Monte Car-

lo (MC) integration based photorealistic image synthesis has found

widespread adoption due to its conceptual simplicity, flexibility and

generality in simulating a wide range of complex lighting effects.

However, images produced by MC renderers with a low sampling

rate are plagued with noise. The level of noise decreases slowly with

respect to the sampling rate, and it is often prohibitively expensive

to produce noise-free images from MC rendering.

Gradient-domain rendering exploits image-space coherence to

significantly boost the performance of MC rendering [Bauszat et al.

2017; Hua et al. 2019; Kettunen et al. 2015; Lehtinen et al. 2013;

Manzi et al. 2015, 2016a, 2014]. At the core of this technique is the

usage of horizontal and vertical image gradients in addition to sole

base images and a screened Poisson solver [Bhat et al. 2008] to

reconstruct the final images. The key insight is that image gradients

estimated by correlated path samples have much lower variance

than image colors. After reconstruction in the image space, the

output images are expected to contain far less noise than those

generated by the primal-domain counterpart.

In gradient-domain rendering, image reconstruction is a crucial

and non-trivial step that significantly influences the image qual-

ity. Current solutions are mainly based on iterative optimization.

Unfortunately, most optimization schemes are sensitive to outliers

and easily incur distracting artifacts even at a relatively high sam-

pling rate. Although leveraging rendering-specific features such

as normal, depth, and texture in optimization can reduce the arti-

facts, it will significantly increase the running time and memory

consumption [Bitterli et al. 2016; Manzi et al. 2016b].

This paper employs a convolutional neural network (CNN) as

a novel screened Poisson solver in lieu of the costly optimization-

based techniques. Recently, CNNs have been becoming the common

workhorse behind a wide variety of computer vision problems [Le-

Cun et al. 2015], benefited from the increasing power of modern

GPUs and the availability of extremely large image datasets. Our

network, termed GradNet, tries to learn an end-to-end mapping

from noisy images and their gradients to noise-free images, incor-

porating some auxiliary feature buffers. Although it is possible to

design and train our network in a supervised fashion, akin to those

used in learning-based MC denoising [Bako et al. 2017; Chaitanya

et al. 2017; Kalantari et al. 2015; Vogels et al. 2018], we restrict it to

be unsupervised. That is no clean data is supplied for training. To

our knowledge, this is the first unsupervised deep learning based

solution specially designed to enhance the image quality of MC

rendering.

In the absence of high-quality target images for supervision, our

GradNet learns directly from the noisy input data. The basic idea is

to learn and reconstruct low-frequency contents from noisy color

images and high-frequency details from the corresponding gradients.

To this end, our GradNet is organized as a multi-branch deep auto-

encoder [Hinton and Salakhutdinov 2006] with a joint loss function.

A data-branch and a data loss are designed to extract low-frequency

features from noisy color images, while a gradient-branch and a

gradient loss aim to best preserve high-frequency structures from

gradient images.

To further improve the image quality, we also leverage rendering-

specific features (e.g., albedo, normal, depth) in our network. These

features are both fed into our GradNet as input and used in the loss

function.We develop a novel first-order loss accompanied with a new

G-branch. The first-order loss encourages nearby pixels to lie on a

hyper-plane (parameterized byGwhich is updated in theG-branch)

in the high-dimensional space expanded by the features. We observe

that including auxiliary feature buffers causes negligible overhead to

the prediction of our GradNet but significantly improves the image

quality.

In summary, our main contributions are:

• the first unsupervised deep learning solution to screened

Poisson reconstruction in gradient-domain rendering,

• a multi-branch auto-encoder allowing extracting both low-

frequency contents and high-frequency details from noisy

inputs,

• a novel reconstruction loss function incorporating auxiliary

feature buffers, and

• a well-designed training dataset that is easy to obtain and is

open to the public.

2 RELATED WORK

2.1 Gradient-Domain Rendering

Gradient-domain rendering methods leverage image gradients in ad-

dition to colors to improve the convergence of MC rendering. Since

the seminal work of gradient-domain Metropolis light transport

[Lehtinen et al. 2013], there are several relevant follow-up works.

To achieve effective variance reduction, highly correlated paths are

generated to build an efficient estimator of the image gradient. After

that, a screened Poisson reconstruction is performed to generate the

final image. Manzi et al. [2014] propose an improved sampling strat-

egy that estimates the gradient between two non-adjacent pixels.

Kettunen et al. [2015] extend path tracing to the gradient domain

and achieve a faster convergence rate than the primal-domain coun-

terpart. To further reduce the variance, gradient-domain rendering

has also been integrated with other techniques such as bidirectional

path tracing [Manzi et al. 2015], path reusing [Bauszat et al. 2017],

photon density estimation [Hua et al. 2017] and vertex connection

and merging [Sun et al. 2017], combining the advantages of differ-

ent techniques. By extending from 2D to 3D, temporal coherence

can be utilized in gradient-domain rendering [Manzi et al. 2016a].

Recently, volumetric rendering has also been adapted to gradient-

domain rendering [Gruson et al. 2018]. Our work is orthogonal to

these techniques which focus on robust gradient sampling. The

proposed deep neural network can be a competitive alternative in

their reconstruction steps.

2.2 Image-Space Reconstruction

Image-space reconstruction is proved useful in many MC rendering

methods as a post-processing step. In conventional primal-domain

rendering, it mainly refers to image denoising which is routinely

used in production environments. A thorough review of MC denois-

ing can be found in some recent surveys [Sen et al. 2015; Zwicker
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et al. 2015]. Traditional denoising methods usually rely on image

filtering due to its simplicity and efficiency. Denoisers try to select

the best reconstruction filter locally to minimize given objectives. To

make the filter more robust to noise in the input, the non-local means

(NLM) strategy is quite often used [Bitterli et al. 2016; Boughida and

Boubekeur 2017; Buades et al. 2005; Delbracio et al. 2014; Kalantari

and Sen 2013; Rousselle et al. 2012]. Auxiliary feature buffers are

also fully utilized, serving as less noisy cues [Li et al. 2012; Rousselle

et al. 2013; Sen and Darabi 2012]. These methods can be interpret-

ed as zeroth-order linear regressions. First-order regressions based

denoisers are becoming popular and have achieved state-of-the-art

quality [Bauszat et al. 2011; Bitterli et al. 2016; Moon et al. 2014].

Higher-order models have also been explored [Moon et al. 2016],

at the risk of overfitting to the input noise. More recently, machine

learning approaches have found remarkable success at the task of

MC denoising [Bako et al. 2017; Chaitanya et al. 2017; Kalantari et al.

2015; Vogels et al. 2018]. However, these learning-based methods

require vast quantities of ground-truth data for training, which is

computationally expensive for MC rendering.

In gradient-domain rendering, image reconstruction can be per-

formed either by solving a 2D screened Poisson equation [Bhat

et al. 2008] or by iterative optimization based on control variates

[Rousselle et al. 2016]. Previous studies [Hua et al. 2019; Kettunen

et al. 2015; Lehtinen et al. 2013] show that reconstruction under L2
norm is unbiased but it is quite sensitive to outliers. L1 reconstruc-
tion generally produces more visually pleasing results although it is

biased. Manzi et al. [2016b] regularize the original screened Poisson

equation with local patch constraints based on auxiliary features.

This method generally shows better performance than either L1 or
L2 reconstruction at the cost of long running time and high memory

consumption. An ideal feature is derived by Back et al. [2018] that

can lead to performance improvement by integrating with adaptive

sampling. Ha et al. [2019] propose a least trimmed squares (LTS)

to remove gradient outliers and enhance the image quality of re-

construction. Unlike these methods using costly optimization, we

suggest introducing a deep neural network in the reconstruction

step to boost its performance and robustness.

The only deep learning solution to image reconstruction in gradient-

domain rendering is our concurrent work [Kettunen et al. 2019].

That method relies on reference images usually generated with

a very high sampling rate in the supervised setting. In contrast,

our unsupervised learning solution is free of converged images for

training. The customized first-order loss and the multi-branch ar-

chitecture allow our method to produce high-quality results on par

with and even exceeding those produced by supervised learning.

2.3 Deep Learning for Rendering

Deep learning has been extensively used in many computer vision

applications [LeCun et al. 2015]. Recently, there is a huge interest

in applying deep learning techniques to some rendering-related

tasks [Keller et al. 2018]. For instance, some recent experimental

approaches try to learn better sampling schemes for MC rendering

[Kuznetsov et al. 2018; Müller et al. 2018; Zheng and Zwicker 2019].

Nalbach et al. [2017] show that CNNs can predict some screen-space

effects in real-time by learning the shading process from per-pixel

attributes. Hermosilla et al. [2018] directly learn the mapping from a

3D scene description to a rendered image. Kallweit et al. [2017] em-

ploy a deep neural network for simulating volumetric light transport.

CNNs have also been successfully used for denoising MC rendering

[Bako et al. 2017; Chaitanya et al. 2017; Vogels et al. 2018]. These

methods train CNNs in a fully supervised manner where the target

outputs are generated by MC renderers at a very high sampling rate.

Since generating ground-truth images is extremely computationally

expensive in MC rendering, we resort to unsupervised learning

which does not require clean data at training time. We demonstrate

in Sec. 6 that even trained with unlabeled data, our network can still

faithfully reconstruct high-quality images. Lehtinen et al. [2018]

also proposed to suppress MC noise with unsupervised learning.

Unlike ours, their method trains the network using L2 loss (or a
rescaled version) only and ignores the gradient information.

3 SCREENED POISSON RECONSTRUCTION

Given an input scene, a gradient-domain renderer typically outputs

a coarse base image Ib and two additional gradient images Idx and

Idy containing the horizontal and vertical finite differences between

neighboring pixels. The gradient images are expected to contain

far less noise than the base image as they are obtained from pairs

of highly correlated paths. For the final image reconstruction, two

types of strategies are widely used in gradient-domain rendering.

One is screened Poisson reconstruction [Bhat et al. 2008; Lehtinen

et al. 2013], and the other is iterative optimization based on control

variates [Rousselle et al. 2016]. In the former strategy, the final image

Î is reconstructed by a screened Poisson solver, written as

Î = argmin
I

{����
(
∇x I

∇y I

)
−

(
Idx

Idy

)����
p

+ α ‖(I − Ib)‖p

}
(1)

where ∇x and ∇y are the horizontal and vertical finite difference

operators, respectively. On the right-hand side of the above formula,

the first term ensures the gradient fidelity after reconstruction while

the second term is used to maintain the correctness of color, both

evaluated using Lp norm. Their relative influence is determined by

the parameter α .
In general, p is selected as 1 or 2, corresponding to the L1 or L2 re-

construction, respectively. It is well-known that L2 norm is sensitive

to outliers [Hua et al. 2019]. As a consequence, L2 reconstruction
tends to produce visually unappealing results with bright spots,

although it is unbiased and convenient to implement [Lehtinen et al.

2013]. In contrast, L1 reconstruction is more robust and is preferred

in practice since it produces numerically and perceptually better

results with less noticeable artifacts. Concerning performance, L2
reconstruction time is negligible compared to the rendering time,

while L1 reconstruction, usually relying on the method of iteratively

reweighted least squares (IRLS), is slower and takes several seconds

for a high-resolution image [Bhat et al. 2010; Lehtinen et al. 2013].

Even with the L1 norm, artifacts still occur frequently if the base

images and the gradients contain too much noise. A widely used

strategy to further lower the variance is to impose additional con-

straints or regularizers, pertinent to the application domain of in-

terest. A regularized version of the screened Poisson solver can be
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Fig. 2. An overall pipeline of the proposed framework. The key idea is to

replace the traditonal optimization in screened Poisson image reconstruction

with a deep neural network (GradNet).

written as

Î = argmin
I

{����
(
∇x I

∇y I

)
−

(
Idx

Idy

)����
p

+ α ‖(I − Ib)‖p + λΩ(I, F)

}
(2)

in which Ω(I, F) is a regularization term typically built upon the fea-

ture vector F including several rendering-specific features. Similarly,

solving this problem under L1 norm usually relies on IRLS which is

time-consuming and, worse still, requires too much memory [Manzi

et al. 2016b].

4 UNSUPERVISED DEEP SCREENED POISSON

RECONSTRUCTION

To further improve the quality of reconstructed images and lower

the running time in the screened Poisson image reconstruction, we

propose to model this process with a deep neural network termed

as “GradNet”. An overall pipeline is sketched in Fig. 2. Taking a

coarse base image and the gradients as the input, our GradNet,

after training on thousands of well-designed data, yields a high-

quality image exhibiting low variance and fine details. Likewise,

some rendering-specific features serving as less noisy cues are also

useful in enhancing the reconstructed results. These feature buffers

can be generated inexpensively as a byproduct of MC rendering.

4.1 Problem Formulation

We first formalize our learning-based screened Poisson reconstruc-

tion problem. There is little doubt that supervised learning tech-

niques are effective but labor intensive. In MC rendering, due to

the difficulty in creating noise-free images, preparing the paired

training data for supervised learning is a costly and daunting task.

To circumvent this, we turn to design and train an unsupervised

learning framework that only uses easier-to-obtain noisy images

accompanied with corresponding gradients and some features.

We consider the typical unsupervised learning setup with a train-

ing setD containingK label-free examplesD = {x(1), x(2), ..., x(K )}.

Each example x(k ) (k ∈ [1,K]) comprises a coarse base image, two

gradient images and a multi-channel feature image, i.e.,

x
(k ) = [I

(k )

b
, I
(k)

dx
, I
(k )

dy
, F(k )]. (3)

Our network training consists in finding a value of parameter vector

θ minimizing the following reconstruction error:

ϵ(θ ) =
K∑
k=1

L(x(k ),Φθ (x
(k ))) (4)

0 0.5 1 1.5 2
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Fig. 3. Left: Plots of the conventional logarithmic transformation (log)

and the μ-law transformation with varying μ . Middle: The corresponding

derivatives. Right: Intensity histograms of two HDR images.

in which Φθ denotes our network parameterized by θ and L is a

loss function. Without converged images serving as target outputs,

the loss function, behaving like the energy function in conventional

optimization methods, plays an important role in solving our prob-

lem. It should be carefully designed such that visually distracting

noise are significantly suppressed without weakening important

image structures.

Once trained, our network is able to reconstruct high-quality

images given new examples, i.e.,

Î = Φθ (x) = Φθ (Ib, Idx , Idy , F). (5)

The ideal network estimation Î should be noise-free and preserve

most of the scene details.

4.2 Dynamic Range Compression

Unlike reconstruction of natural images, the raw data (e.g., Ib) fed

into our network contain high dynamic range (HDR) information.

Usually, the HDR regions distribute unevenly in the image space and

the dynamic range is unbounded. This causes an obstacle for the ex-

isting CNNs initially designed for low dynamic range (LDR) images.

Most previous methods handling HDR images map an original input

I to the logarithmic domain by the conventional logarithmic trans-

formation Ĩ = log(I+1) [Bako et al. 2017; Kang et al. 2018; Kuznetsov

et al. 2018; Vogels et al. 2018]. To accelerate the training of deep

networks, we suggest using the following μ-law transformation as

inspired by Kalantari et al. [2017]. It performs range compression

for an HDR image I as

T(I) = sign(I)
log(1 + abs(I)μ)

log(1 + μ)
(6)

in which μ controls the amount of compression. This type of com-

pressor is differentiable and stable for deep learning systems.

Obviously, the conventional logarithmic transformation is a spe-

cial case (up to a constant factor) of the μ-law transformation in

which μ = 1. We visually compare their differences in Fig. 3. As seen,

the derivatives of the μ-law transformation (μ > 1) are relatively

large in the low image intensity areas. Since most pixels of a typical

HDR image have low intensity as shown in Fig. 3 right, a large de-

rivative may avoid gradient vanishing in training neural networks

with back propagation. Currently, we empirically set μ = 16 in our

network. Experimental validation is provided in Sec. 6.6.
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4.3 Loss Function

One of the difficulties in designing a deep neural network is in

establishing a clear and effective objective (e.g., a loss function) for

training. This is even more challenging and particularly important

for our task since ground-truth images rendered at very high sample

counts are unavailable in the unsupervised setting. Without ground

truths at hand, the loss function should

• not solely rely on the data fidelity since the source images

are often of low quality,

• pay more attention to the gradient fidelity since the gradients

contain far less noise, and

• try to make the best of rendering-specific features.

To fulfill these requirements, we employ a joint loss function con-

taining three components: a data loss Ldata, a gradient loss Lgrad

and a first-order loss L1st. The overall loss function thus amounts

to

Lall = Lgrad(Î, Idx , Idy ) + αLdata(Î, Ib) + λL1st(Î, F) (7)

inwhichα and λ are twoweights controlling the amount of influence

a loss should have on the final image. We use this joint loss function

as an energy function, in a similar manner as in [Fan et al. 2018].

4.3.1 Data loss. Though noisy, the input image is still the essential

reference to ensure color consistency. In our work, the data loss

is evaluated by the per-pixel L1 distance between the base image

Ib and the reconstructed image Î. Since both Ib and Î have a high

dynamic range, we compute this loss in the logarithmic domain

based on the previous μ-law transformation:

Ldata(Î, Ib) =
1

N

N∑
i=1

‖T (Îi ) − T (Ib,i )‖ (8)

where N is the total pixel number and ‖ · ‖ denotes L1 norm unless

otherwise stated. It is widely recognized that optimization using

L1 norm can reduce splotchy artifacts from reconstructed images

[Chaitanya et al. 2017; Zhao et al. 2017].

4.3.2 Gradient loss. In gradient-domain rendering, image gradients

are critical in reproducing high-quality images. In our network, the

gradient loss is used to guarantee image smoothness and sharpness

of edges. Similar to the data loss, we also evaluate the gradient loss

in the logarithmic domain:

Lgrad(Î, Idx , Idy ) =

1

N

N∑
i=1

(‖T (∇x Îi ) − T (Idx ,i )‖ + ‖T (∇y Îi ) − T (Idy,i )‖).
(9)

4.3.3 First-order loss. Rendering-specific features can further im-

prove the quality of reconstructed images in MC rendering. In our

network, we exploit a rich set of features including albedo (3D),

normal (3D) and depth (1D) to construct the first-order loss. Under

this configuration, each feature vector is a 7-dimensional vector.

Intuitively, pixels with the similar feature vector tend to have the

same value. Inspired by the first-order regression models [Bitterli

et al. 2016; Moon et al. 2014], we define our first-order loss as

L1st(Î, F) =
1

N |Ni |

N∑
i=1

∑
j ∈Ni

wi , j ‖T (Îj )−T (Îi )−G
�
i (Fj−Fi )‖ (10)

where F is a high-dimensional feature vector and Ni represents

the neighboring pixels around index i . We restrict the neighbor-

hood to the four nearest neighbors, i.e., the immediate left, right,

top, and bottom neighbors of pixel i . This actually provides a very

small region centered around pixel i . The term G
�
i (Fj − Fi ) be-

longs to the Taylor polynomial of order one that approximates Îj
via Îi and its derivative Gi . The weight wi , j is calculated from Ib:

wi , j = exp[−‖Ib,i − Ib, j ‖
2/(2σ 2

b
)] with σb representing its filtering

bandwidth. Currently, we empirically set σ 2
b
= 1/18. This enable us

to reproduce a smooth image with well-preserved details.

In Eq. (10), the derivative G is unknown and should be jointly

optimized with Î in the traditional methods [Bitterli et al. 2016; Moon

et al. 2014]. In our CNN-based approach, we train an independent

branch for G with the loss function:

L′(G, Ib, F) =
1

N |Ni |

N∑
i=1

∑
j ∈Ni

wi , j ‖T (Ib, j )−T (Ib,i )−G
�
i (Fj−Fi )‖.

(11)

This loss is quite similar to the first-order loss in Eq. (10) except that

Î is replaced by Ib. It seems that we may still use Î in the above loss,

but experimental results show that both the derivative G and the

reconstructed image Î will be over-blurred in this case.

4.4 Network Architecture

Now, we describe our network architecture in detail. As shown in

Fig. 4, we adopt the basic architecture of a deep encoder-decoder net-

work with several branches. The encoder is split into two branches: a

data-branch and a gradient-branch. HDR images are compressed by

the μ-law transformation in Eq. (6) before feeding into the network.

The data-branch is designed to extract low-frequency contents from

noisy base image Ib. The auxiliary feature buffers are also fed into

this branch. In contrast, the gradient-branch is expected to extract

feature maps from image gradients Idx and Idy and to enhance the

high-frequency scene structures. It seems more straightforward to

construct the encoder with a single branch such that both image

colors and gradients are fed into this branch. However, experimental

results shown in Sec. 6.5 reveal that such a single branch encoder is

suboptimal compared with our two-branch version. This is probably

because image gradients are quite sparse, and a single branch with

shared weights may weaken the effects of image gradients. A sepa-

rate branch tailored for the gradients tends to preserve the desired

features extracted from the gradients as much as possible.

For all convolution operations in both branches, the kernel size

is set to 3 × 3 and the stride is selected as 2. Consequently, the

resolution of output feature maps are divided by two while the

number of feature channels are doubled. These downsampling steps

can extend the receptive fields of our network.

After three convolutional layers, the output feature maps of the

two branches are concatenated and fed into several residual blocks

[He et al. 2016]. These residual blocks are inserted to accelerate

the learning process. Currently, we use 4 residual blocks in Grad-

Net. The deconvolutional layers on the decode side are responsible

for upsampling the feature maps and recovering the image details

while suppressing noise. The convolution operations in the decoder

have the kernel size 4 × 4 and stride 2. Note that there are no fully
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[I
b
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, ]I

32

32
64

64
128

128

256

Residual
Blocks

Data-Branch

Gradient-Branch

512 256

128

Î G

G-Branch
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+
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Fig. 4. The network architecture of GradNet. We adapt the U-Net [Ronneberger et al. 2015] and fuse it with a network branch optimized for image gradients.

Four residual blocks are inserted to accelerate the learning process. Each residual block contains two convolutional layers, a Leaky ReLU (LReLU) activation

unit and a residual connection. Skip connections are used between mirrored layers in the encoder and decoder stacks. We also include a G-branch to update G

which is used in the first-order loss L1st.

connected layers in our network and hence it is only convolutional.

This can keep the number of parameters reasonably low.

Similar to the U-Net [Ronneberger et al. 2015], our network also

uses skip connections between mirrored layers in the encoder and

decoder stacks. Skip connections incorporate local and low-level

information from input data into the decoder step-by-step. After

several downsampling steps in the encoder, many high-frequency

details in earlier layers are lost. However, these information could

be potentially used by the decoder to aid reconstructing fine details.

Unlike the skip connections used in the U-Net which has only one

branch in the encoder, our encoder has two branches and we intro-

duce the following dual skip connection based upsampling operation:

h
D
l
= Deconv(hD

l−1 ⊕ h
ED ⊕ h

EG ) (12)

where h
D
l

is the feature map generated by the l-th layer of the

decoder while hED and h
EG , with the same spatial resolution with

h
D
l−1

, are the feature maps generated by the data-branch and the

gradient-branch, respectively. Deconv is a traditional deconvolution

operation and ⊕ denotes concatenation along the feature dimension.

AG-branch on the right side of Fig. 4 is added to update the deriv-

ativeGwhich is required in the first-order loss L1st. For this branch,

we use a slightly shallow network with only three convolutional

layers, because we observe that a deep network may over-blur G,

resulting in loss of detail of reconstructed images.

Moreover, we adopt Leaky ReLU (LReLU) [Maas et al. 2013] acti-

vations in all the convolutional layers except the last layer of the

decoder and the last layer of the G-branch. Unlike the ReLU activa-

tion that simply thresholds at zero when the input x < 0, the LReLU

activation returns ax with a being a small constant (e.g., a = 0.01), in

the negative region. This avoids zero gradients for negative inputs.

4.5 Post-Processing

The network output is slightly biased due to the usage of the μ-law
transformation in HDR compression and decompression. Adding

auxiliary feature buffers into our network may also increase the

bias. However, we find that a simple post-processing step can reduce
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Fig. 5. Visual effect of the post-processing (P.P.) step. Left column: recon-

structed images from a base image of 512 samples per pixel. Right column:

error maps compared against the reference.

the bias. This post-processing step is necessary to alleviate the bias

problem regardless of the sampling rate. Specifically, let Î be the

network output and k be a pre-defined filtering kernel, the final

image is adjusted as

Î ←
Ib ∗ k

Î ∗ k

 Î (13)

where ∗ is a convolution operator, 
 indicates the Hadamard product

(element-wise product) and the division executes similarly in the

element-wise manner. Currently, we choose a simple Gaussian filter

with a radius 45 and a standard deviation 15. The visual effect of

this post-processing is shown in Fig. 5. As seen, this post-processing

step lowers the reconstruction error.

5 IMPLEMENTATION AND TRAINING DETAILS

5.1 Dataset Preparation

The performance of deep learning methods heavily depends on

the choice of datasets. Since generating a large quantity of noise-

free images using MC rendering is tremendously tedious and time

consuming, we organize our training data without ground truths.
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This means the training examples used in our network are noisy.

Obviously, collecting such a dataset with “poor” images is much

easier than that with clean images as supervision.

We generate a dataset consisting of nine base scenes from [Bit-

terli 2016]. To assure that the dataset covers a sufficient range of

color patterns, lighting conditions and geometries, we randomly

perturb the base scenes by varying materials, lighting and camera

parameters, and finally generate 900 high-resolution (1280 × 720)

images in total. Some randomly changed scenes are demonstrat-

ed in the supplemental material. We generate the high-resolution

base images and the corresponding gradients with the gradient-

domain path tracer [Kettunen et al. 2015] at a sampling rate of 64

spp (samples per pixel), along with three feature buffers (i.e., albedo,

normal and depth) as a by-product. The albedo is recorded at the

first non-specular surface along the path. The normal buffer (N) is

transformed by (N + 1)/2 while the depth buffer is linearly scaled

to the range [0, 1]. In this way, all channels of the feature buffers

are normalized to the range [0, 1]. Then, we randomly extract 15

patches of size 256 × 256 from each image. Each patch contains one

noisy base image, two image gradients and three feature buffers.

Eliminating 846 patches with illegal values 1, 12654 patches are

reserved. These patches are further split into 11785 training samples

and 869 testing samples to train our network. In the inference phase,

images of arbitrary resolutions can be given to the network as input,

thanks to the fully convolutional neural network. We plan to release

all our training and testing data upon publication.

5.2 Training

Our GradNet is implemented on top of the PyTorch framework

[Paszke et al. 2017]. We train it using mini-batch SGD and apply

the Adam solver [Kingma and Ba 2015] with moment parameters

β1 = 0.5 and β2 = 0.999. We adjust the learning rate with the

basic learning rate of 0.0001 and the power of 0.95 every other

epoch. Hence, the learning rate gradually decays based on the epoch.

The weights of the network are all initialized using the technique

described in He et al. [2015]. Training examples are fed into the

network in a mini-batch size of 32. We train the network for 50

epochs, which takes about 4 hours on four NVIDIA GTX 1080Ti

GPUs. The auto-encoder and the G-branch are trained alternatively

during each epoch.

For the weights in the loss function, we currently set α to a fixed

value 1 while setting λ as

λ =

{
0 if epoch ≤ 5

min(0.1 × 1.1(epoch−5), 2.0) if epoch > 5
(14)

implying that the first-order loss is introduced after 5 epochs, and

its weight increases slowly until it reaches a maximum 2.0. The

training schedule for λ is designed such that the auxiliary buffers

are not involved in the loss function at an early pre-training stage,

avoiding the reconstructed images deviating greatly from the base

images. As λ increases, an optimal combination of feature term and

data term can be learned, leading to smoother results.

1Illegal patches are those patches containing illegal pixels with invalid values, such as
NaN and negative values, due to numerical issues in gradient-domain path tracing.

6 RESULTS AND DISCUSSION

To evaluate our method, we compare it to a range of state-of-the-

art image reconstruction techniques designed for gradient-domain

rendering. We also compare against some image denoising methods

for general MC rendering. After that, we thoroughly analyze the

various design choices made in our GradNet. The error metric used

in comparison is the relative mean square error (RelMSE): mean((Î−

Iref )
2/((Iref )

2 + δ )) in which Î is the reconstructed image, Iref is

the corresponding reference image generated by path tracing at an

extremely high sampling rate and δ = 0.01 is a small constant used

to avoid dividing by zero.

6.1 Comparison with Existing Reconstruction Methods

We first compare our deep learning based method to other existing

image reconstruction techniques for gradient-domain rendering: L2
reconstruction, L1 reconstruction, weighted reconstruction based on
control variates (CV) [Rousselle et al. 2016], and the least trimmed

squares (LTS) optimization [Ha et al. 2019]. We compare these meth-

ods with the same sampling rate because their reconstruction time

is negligible compared with the sampling time. The results of five

benchmark scenes (Kitchen, Bookshelf, Bathroom, Sponza and

Door) are reported in Fig. 6. These scenes cover a variety of scene

configurations and are not used in training our network. The in-

put images (base images, gradients and features) are generated by

gradient-domain path tracing [Kettunen et al. 2015] implemented

on top of the Mitsuba renderer [Jakob 2010] and the reference im-

ages are generated by primal-domain path tracing at a sampling

rate of 128K spp. From the comparison we see that our method

significantly improves L2 reconstruction and L1 reconstruction in

RelMSE of a factor of 2 to 5. The weighted CV method and the LTS

method tend to produce images of better quality than either L1 or
L2 reconstruction. However, our deep learning based method out-

performs these methods both qualitatively and quantitatively. The

closeups further validate that our method can significantly reduce

the variance of input base images, yielding higher-quality images

than those generated by its competitors. We provide a supplemental

material containing all images in an interactive HTML viewer.

Fig. 7 shows RelMSE convergence of the above methods in com-

parison across the five scenes. Here, we plot the RelMSEwith respect

to the sampling rate. Recall that our model is trained on a dataset

with only one sampling rate: 64 spp. Even so, our method still per-

forms well on a wide range of noise levels. It consistently generates

numerically improved results compared against the previous tech-

niques.

We also compare our method to the regularized reconstruction

method by Manzi et al. [2016a] in Fig. 8. Generally, this regularized

reconstruction method quantitatively outperforms other conven-

tional reconstruction methods without leveraging auxiliary feature

buffers, as shown in 7. However, it has high time and storage com-

plexities. Using the same sampling rate, our deep learning solution

is on par with and even exceeding that method with far less running

time (0.16 seconds vs. 1 minute) andmemory consumption (3.8GB vs.

7.5GB). The regularized reconstruction method tends to over-blur

important scene details such as the shadows in the Door scene and

the Kitchen scene. On the other hand, our method also contains
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Kitchen (128 spp) 0.0708 0.0185 0.0157 0.0129 0.0140 0.0074

Bookshelf (256 spp) 0.1935 0.0259 0.0282 0.0129 0.0154 0.0052

Bathroom (64 spp) 0.2502 0.0394 0.0374 0.0242 0.0270 0.0147

Sponza (16 spp) 0.0299 0.0044 0.0053 0.0031 0.0033 0.0021

Door (256 spp)

(a) Ours

0.2577

(b) Base (Ib)

0.0237

(c) L2

0.0257

(d) L1

0.0086

(e) CV

0.0110

(f) LTS

0.0050

(g) Ours (h) Reference

Fig. 6. Image reconstruction results using our GradNet, compared to several existing reconstruction methods: L2 reconstruction, L1 reconstruction, weighted

reconstruction based on control variates (CV) [Rousselle et al. 2016], and the LTS optimization [Ha et al. 2019]. The numbers at the bottom of each image

report the RelMSE of the corresponding reconstruction method.
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Fig. 7. RelMSE convergence plots of the tested methods as a function of the samples per pixel (spp) on five scenes.

REG (0.0039) Ours (0.0037) Reference

REG (0.0054) Ours (0.0046) Reference

Fig. 8. Comparison between our method and the regularized reconstruction

method (REG) by Manzi et al. [2016a]. The sampling rate is 512 spp and the

RelMSE is provided in parenthesis.

some over-blurred regions, e.g., the wallpaper in the Bookshelf

scene, as shown in the supplemental material. This is because the

noise level is high in these regions such that the effect of the albedo

has been weakened.

6.2 Comparison with Denoising Methods

To further show the effectiveness of our GradNet, we also compare

it to two state-of-the-art image-space denoising methods designed

for conventional MC rendering: Nonlinearly Weighted First-order

Regression (NFOR) [Bitterli et al. 2016] and Bayesian Collaborative

Denoising (BCD) [Boughida and Boubekeur 2017]. Note that the

sampling time of gradient-domain path tracing is roughly twice

higher than that of its primal-domain counterpart. Therefore, for

an almost equal-time (regardless the denoising time) comparison

we double the sampling rate for both the NFOR denoiser and the

BCD denoiser. As shown in Fig. 9, these two denoisers may produce

visually distracting artifacts, while our method generally shows

fewer artifacts even if the sampling rate is reduced by half. More-

over, we observe that the NFOR denoiser occasionally smoothes

out some shadows as shown in the Sponza scene, probably because

the features it relied on are not apparent in this region. Concerning

the timing performance, the denoising time of NFOR is typically

more than one minute regardless the sampling rate while the de-

noising time of BCD increases with respect to the sampling rate. In

comparison, the reconstruction time of our method is far less than

one second and hence is negligible compared to the sampling time.

For a comprehensive comparison, please refer to the supplemental

material.

128 spp (0.0148)

512 spp (0.0055)

8 spp (0.0044)

(a) NFOR

128 spp (0.0293)

512 spp (0.0138)

8 spp (0.0105)

(b) BCD

64 spp (0.0107)

256 spp (0.0050)

4 spp (0.0043)

(c) Ours (d) Reference

Fig. 9. Comparison with two image-space denoising methods: NFOR [Bit-

terli et al. 2016] and BCD [Boughida and Boubekeur 2017]. The sampling

rate and RelMSE (in parenthesis) are provided.

6.3 Comparison with Supervised Learning Solutions

Currently, most learning-basedMCdenoisers rely heavily on ground-

truth images. Compared with these supervised learning solutions,

our solution has a significantly lower cost in obtaining unlabeled

data. Consequently, a much larger training dataset can be collected

using the same time budget as in the supervised learning solu-

tions, leading to better inferring results. To show this, we compare

our method to the KPCN of Bako et al. [2017] in Fig. 10 2. To en-

sure roughly the same time budget in collecting the dataset, only 9

ground-truth images rendered with 8192 spp are generated and 3600

training examples are extracted from these 9 images. With such a

small dataset, the quality of reconstruction (KPCN/3K) is significant-

ly lower than ours. Even with 4× dataset whose size is roughly the

same as ours, the KPCN (KPCN/14K) may still be inferior than ours.

Thanks to the special design for the gradients, our method retains

most high-frequency details, especially the shadows. Note that the

scenes used in Fig. 10 and the training examples of the KPCN are

all generated by the Tungsten renderer [Bitterli 2016]. The results

2For a fair comparison, we modify the KPCN by incorporating the gradients as an
additional auxiliary feature.
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House (128 spp)

Livingroom (64 spp)

Staircase (128 spp)

(a) Ours

0.0038

0.0019

0.0024

(b) KPCN/3K

0.0019

0.0014

0.0021

(c) KPCN/14K

0.0011

0.0011

0.0019

(d) Ours (e) Reference

Fig. 10. Comparing our method to the KPCN by Bako et al. [2017] with

the same time budget in collecting the dataset (KPCN/3K) and the same

size of training dataset (KPCN/14K), respectively. Our method outperforms

the KPCN both visually and numerically (RelMSE).

Fig. 11. Impact of the training datasets in our method. We compare our

method trainedwith full dataset (Full) against those trainedwith 1/4 dataset

(Quarter) and 1/2 dataset (Half), respectively. The sampling rate is 256 spp

for each scene and the RelMSE is shown below.

of the previous five scenes rendered by the Mitsuba renderer are

provided in the supplemental material.

We also test the different sizes of training datasets in our method.

In Fig. 11, as the size of the training dataset reduces by half and

more, the RelMSE decreases steadily while the visual quality changes

imperceptibly. Therefore, even with a small training dataset, our net-

work still works well. Nevertheless, expanding the training dataset

will improve the performance of our GradNet.

6.4 Impact of Losses

We conduct several experiments to evaluate the impact of each loss,

especially the gradient loss Lgrad and the first-order loss L1st. In

the following, we consider the loss combinations: Ld+g = Lgrad +

αLdata, Ld+1 = αLdata + λL1st, and our joint loss function Lall =

Lgrad + αLdata + λL1st.

512 spp (0.0091)

512 spp (0.082)

512 spp (0.0054)

(a) LTS

512 spp (0.0089)

512 spp (0.0062)

512 spp (0.0052)

(b) Ld+g

512 spp (0.0038)

512 spp (0.0037)

512 spp (0.0050)

(c) Lall (d) Reference

Fig. 12. Visual comparison between our method without (Ld+g) and with

(Lall) the first-order loss. The numbers in parenthesis report the RelMSE.

32 spp (0.6459)

32 spp (0.0146)

128 spp (0.0189)

128 spp (0.0069)

512 spp (0.0043)

512 spp (0.0037)

Reference

Reference

Fig. 13. Impact of the gradient loss on the Door scene. As the sampling rate

increases, our method with Lall (bottom row) consistently surpasses that

with Ld+1 (top row) both visually and in terms of RelMSE (in parenthesis).

Fig. 12 compares our method without and with the first-order loss.

The same training configuration is applied to each case. As expected,

without the first-order loss, the reconstruction (using Ld+g) fails

to remove some noticeable outliers and the results would be quite

noisy even at a high sampling rate (e.g., 512 spp). The situation

worsens as the sampling rate decreases. However, even without

feature buffers, our method still outperforms the state-of-the-art

LTS method that also does not rely on any feature. Note that the

LTS method only aims to remove strong outlier gradients, and is

ineffective to inlier gradients [Ha et al. 2019]. In addition, the LTS

method may fail given a small number of samples.

Fig. 13 and Fig. 14 compare our method without 3 and with the

gradient loss. The gradient can be viewed as a special feature of the

scene. Unlike other features used in our network, the gradient can

preserve glossy reflection, shadows and caustics that can hardly be

3The gradients are absent in both the network architecture and the loss function.
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(a) Ib (1024 spp) (b) Idx (c) Idy (d) Ld+1 (e) Lall (f) Reference

Fig. 14. Visual comparison between our method without (Ld+1) and with the gradient loss (Lall) on the Kitchen scene. Without the gradient serving as a

special feature, some important scene structures such as highlights and shadows can hardly be captured by our auxiliary feature buffers.
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Fig. 15. RelMSE convergence comparison between the one-branch style (blue curves) and the two-branch style (red curves) on the encoder side.

captured by geometric features and textures. As seen in the first

row of Fig. 14, some metal wires are smoothed out since geometric

features and textures on these wires are inapparent. In contrast,

the gradients are quite high in these regions due to strong glossy

reflection and hence are more appropriate for recovering these tiny

structures. The second row shows that shadows (under the knife) are

another type of scene information that can be well-preserved by the

gradient loss. Fig. 13 shows that our method with Lall consistently

reproduces high-quality images at different sampling rates, while

the lack of the gradient loss will result in large variance when the

sampling rate is low and overly blur as the sampling rate increases.

Note that in this group of comparison, the maximum value of λ is

set to 1.0 for the case of Ld+1. A slightly reduced value of λ can

compensate the absence of the gradient loss and make the results

more clear. Even so, some important structures mentioned above

still disappear.

6.5 Impact of Branches

Our GradNet leverages two separate branches to encode the dense

color images (and the features) and the sparse gradients, respectively.

In Fig. 15 we prove that such a design choice is generally better than

that of a single branch on the encoder side. For a fair comparison, we

train these two deep networks with the same training set and hyper-

parameters. Moreover, for the one-branch network, we double the

channel number of feature maps in the encoder to ensure as much

as possible that these two styles of networks have the same number

of trainable parameters. Obviously, the two-branch style shows

clear superiority over the one-branch style especially when the

sampling rate is low. As the sampling rate increases, the gap of

accuracy between these two styles decreases gently. We further

observe that the two-branch style performs particularly well on

very noisy inputs such as the Bookshelf scene and the Door scene.

Visual comparison in Fig. 16 shows that the one-branch encoder

occasionally smoothes out the scene details (e.g., the wood grains,

the book edges and the wrinkles) as the extracted high-frequency

features are weakened if sparse and low-energy gradients are mixed

in one input branch with the dense and high-energy image colors.

6.6 Impact of the μ-Law Transformation

In our current implementation, we compress the HDR inputs with

the μ-law transformation defined in Eq. (6). We observe that this

transformation generally converges faster that the conventional

logarithmic transformation. This is evidenced in Fig. 17 where we

show the evolution of RelMSE over the number of epochs for these
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(a) One-branch (b) Two-branch (c) Reference

Fig. 16. Visual comparison between the one-branch style and the two-

branch style on the decoder side. The two-branch style tends to preserve

more image details than the one-branch style.
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(a) Evolution of RelMSE

(b) log (epoch= 10)

(c) μ = 16 (epoch= 10)

Fig. 17. Convergence rate comparison between the μ-law transformation

(μ = 16) and the conventional logarithmic transformation (log). For both

methods we do not include the first-order loss in training because the

features are LDR and they may influence the accuracy.

two strategies. We compare the evolution of the RelMSE instead of

the training (testing) losses, because the losses range differently for

different HDR compression methods. The plots verify that the μ-law
transformation (μ = 16) consistently wins the conventional logarith-

mic transformation in terms of RelMSE. The visual comparison in

the closeups further shows the benefit of the μ-law transformation.

Note that we set μ = 16 currently, and find it is a good trade-off

between the convergence rate and the bias. The results tend to bias

more if a larger μ is used.

6.7 Runtime Performance

We evaluate the runtime performance at an input resolution of

1280 × 720 on a PC with a 4.2 GHz Intel Core i7 processor and an

NVIDIA GTX 1080Ti GPU. Our model takes 0.16s on average to

reconstruct an image irrespective of the sampling rate and the noise

level. In comparison, the conventional L1 reconstruction typically

takes 0.67s per image on the same GPU. Moreover, the memory cost

of our model in prediction is less than 4GB.

7 CONCLUSION AND FUTURE WORK

We have proposed GradNet, the first unsupervised deep learning

architecture that can be trained end-to-end to reconstruct high-

quality images from noisy inputs in gradient-domain rendering.

No clear data is needed in training, and our network still works

well and outperforms state-of-the-art reconstruction methods both

quantitatively and qualitatively. It also enjoys a fast speed by taking

advantage of recent advancements in deep learning. The key of the

proposed deep network is a multi-branch auto-encoder equipped

with a joint loss function incorporating auxiliary feature buffers. By

carefully designing the network architecture and the loss function,

both low-frequency contents and high-frequency details of the noisy

inputs are well-preservedwhile suppressing the disturbingMCnoise

as much as possible. Without requiring prohibitive computing time

for generating ground-truth images, our training dataset is relatively

easy to build and expand. We believe that deep learning systems in

the future will mostly be of the unsupervised variety and we hope

our work can promote the usage of unsupervised deep learning in

rendering.

Several interesting future works would further boost the perfor-

mance and robustness of the proposed method. First, it would be

possible to add an adversarial loss [Goodfellow et al. 2014] in our

GradNet to further enhance important local structures of recon-

structed images. Second, our method is also likely to be extended

to the temporal domain by introducing temporal finite differences

[Manzi et al. 2016a] and adding a temporal loss term in our joint

loss function. Finally, it is also interesting to combine our technolo-

gy with adaptive sampling to improve the overall performance of

rendering.
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