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Fig. 1. Rendering results of our method on the Splash scene: with pure specular paths and environment light (left) and pure specular paths only (right). We
simulate a TT (transmittance-transmittance) and a TRT (transmittance-reflection-transmittance) light transport. The specular paths start on a point light,
encounter perfectly specular reflective/refractive events, and end on the pinhole camera. We postprocess the images with a bloom filter, to better show the
intensity of specular path contributions.

In scenes lit with sharp point-like light sources, light can bounce several
times on specular materials before getting into our eyes, forming purely spec-
ular light paths. However, to our knowledge, rendering such multi-bounce
pure specular paths has not been handled in previous work: while many
light transport methods have been devised to sample various kinds of light
paths, none of them are able to find multi-bounce pure specular light paths
from a point light to a pinhole camera. In this paper, we present path cuts to
efficiently render such light paths. We use a path space hierarchy combined
with interval arithmetic bounds to prune non-contributing regions of path
space, and to slice the path space into regions small enough to empirically
contain at most one solution. Next, we use an automatic differentiation
tool and a Newton-based solver to find an admissible specular path within a
given path space region. We demonstrate results on several complex specular
configurations, including RR, TT, TRT and TTTT paths.
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1 INTRODUCTION
Geometrically complex surfaces with highly specular materials oc-
cur on many common objects around us. With sharp point-like light
sources (such as the sun, or indoor LED lights), light can bounce
several times on these specular materials before getting into our
eyes, forming (to a close approximation) purely specular light paths.
Both reflections and refractions can be present, producing inter-
esting glinty effects. However, to our knowledge rendering such
multi-bounce pure specular paths has not been handled in previous
work.

In physically-based rendering, a typical approach is to find paths
connecting the light source and the camera in a probabilistic fashion.
A Monte Carlo estimator typically divides the contribution of a
constructed path by the probability of the path being found (in an
appropriate measure) [Veach 1997]. While many light transport
methods have been devised to sample various kinds of light paths,
none of them are able to find multi-bounce pure specular light paths
from a point light to a pinhole camera. Thus, this component of the
light transport will simply be missing from the resulting image in
current rendering systems, research or commercial.

Of course, one could regularize the problem by instead using a low
non-zero roughness and/or a small but finite light size, which lets
one compute approximations with standard algorithms [Kaplanyan
and Dachsbacher 2013]. Such regularization approaches will still
have a hard time finding the solution with zero roughness. To un-
cover what the ground truth solution looks like, and howmany path
connections it contains, we need to study the pure specular setting
directly. We believe that a deeper understanding of this idealized
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situation can lead to new visual effects and progress in algorithms
for the general case.

Let an admissible specular path be one that at every vertex follows
the rules of perfect specular reflection (refraction) of the underly-
ing material. Finding admissible specular paths, by initializing with
a nearby non-admissible path and refining through a root solver
such as Newton’s method, is not difficult and has been studied by a
number of previous methods, though in slightly different contexts
[Hanika et al. 2015a; Jakob and Marschner 2012; Mitchell and Han-
rahan 1992; Walter et al. 2009]. We cannot directly use any of these
approaches in the pure specular setting with many admissible paths,
as they only solve the local problem of refining a path that is already
close to admissible; the exception is Walter’s method, which solves
the global problem by using a hierarchical data structure on top
of meshes with interpolated normals, but only works for a single
refraction.
In this paper, we present path cuts to efficiently render light

paths through a chain of multiple pure specular reflections and
refractions, from a point light to a pinhole camera, under geometric
optics. Our approach is deterministic: we enumerate the discrete
set of admissible pure specular paths of a given length and type
connecting the light and the camera. We globally slice the path
space into small regions; within a region we solve the local problem
of refining the path to become admissible. In summary, we resolve
the following challenges:

• We use a path space hierarchy combined with interval arith-
metic bounds to efficiently prune non-contributing regions
of path space, and to slice the path space into regions small
enough that local refinement becomes feasible.

• We use an automatic differentiation tool and a Newton-based
solver to find an admissible specular path within a given path
space region, and splat its contribution onto the image plane.

• We show that our purely specular solution can be used to
initialize paths for other algorithms, such as an MCMC-based
approach to render with small but non-zero roughness.

While several of these ideas were explored in different settings in
previous work (some already in the work of Mitchell and Hanrahan
[1992]), ours is the first approach to directly focus on multi-bounce
purely specular paths on complex geometric surfaces given by tri-
angle meshes with interpolated normals.

The rest of the paper is arranged as follows. In Sec. 2, we review
related path construction methods and motivate our work. Then we
present our method in three parts: path space exploration through
path cuts (Sec. 3), solving for a specular path and calculating a path’s
contribution to the image plane (Sec. 4), and discuss the possibility
of multiple solutions. After that, we show and discuss our results
in Secs. 5 and 6. Finally, in Sec. 7, we summarize our method and
propose future directions.

2 RELATED WORK
Solving for admissible specular paths by root finding, typically us-

ing a variation of Newton’s method, has been well studied. Mitchell
and Hanrahan [1992] note that admissible paths are the ones with
locally extremal total lengths (minimal or maximal), according to

the Fermat principle. They use the Newton method to find the ver-
tex positions that minimize (maximize) the total length, assuming
surfaces represented as implicit functions.

However, Fermat’s principle no longer holds for primitives with
differing geometric and shading normals, common in realistic scenes.
Walter et al. [2009] propose a similar solution to handle one-bounce
refractions through a mesh of primitives with interpolated shading
normals. Instead of relying on Fermat’s principle, the admissible
paths are simply the ones whose vertices align the normal vector
with the (refractive) half vector. Their method is used in the context
of single scattering in media with refractive boundaries, connect-
ing a volumetric scattering vertex to a light vertex outside of the
medium, in a direct illumination (next event estimation) configura-
tion. Furthermore, Walter et al. use a hierarchy to isolate all possible
connections, though (unlike our method) it is limited to a single
refractive surface event. We show a comparison to Walter’s method,
applying our solution to the single refraction setting.

Manifold exploration [Jakob and Marschner 2012] allows for the
mutation of specular chains terminating on a non-specular vertex
in a Markov chain Monte Carlo integrator (e.g. Metropolis light
transport). The mutation is achieved by perturbing the location of
the terminal non-specular vertex, and adjusting the whole chain to
become admissible again. However, this method does not work for
pure specular paths, and requires the Markov chain light transport
setting to be applicable. Note that a manifold of admissible paths
only exists if the terminating vertex is non-specular. In our case of
pure specular paths, there is no manifold, but instead a discrete set
of admissible paths (except for rare degenerate cases).
Manifold next event estimation (MNEE) [Hanika et al. 2015a]

is similar to Walter et al.’s approach, but not specific to scattering
media. Instead, the method can connect any shading point on a
non-specular surface, through one or more refractions, to a light
source sample. This is done through initializing a non-admissible
connection and refining it to an admissible one. However, unlike
Walter et al., no global search is used to isolate all potentially valid
solutions, so the method is simpler and faster than Walter’s, but it
does not apply in cases where many admissible connections can be
made, i.e. in settings where the global component of the problem is
non-trivial.
Kaplanyan et al. [Kaplanyan et al. 2014] proposed half vector

space light transport (HSLT), in which a path is represented by
its start and end point constraints and a sequence of generalized
half vectors. This enables efficient sampling of specular or close-to
specular interaction in the context of Markov chain Monte Carlo
light transport. Compared to [Jakob and Marschner 2012], HSLT
does not require a specular/non-specular classification of the path
vertices. Later, Hanika et al. [Hanika et al. 2015b] further improved
upon this method for difficult input geometry, resulting in a more
practical and faster approach. However, neither of these approaches
focus on pure specular light transport.
Our approach shares the same optimization-based admissible

specular path solving routine with the above methods. The differ-
ence is that we aim at exhaustively locating pure specular light
paths from a point light to a pinhole camera. In contrast, all of the
above methods are focused on finding subpaths of one or more
specular vertices, terminating on a non-specular vertex (surface or
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volume). Furthermore, we are looking to deterministically enumer-
ate all possible admissible paths up to a given length. In that sense,
our work is closest to Walter et al.’s, but instead of single-refraction
subpaths terminating on a scattering vertex, we support multiple
reflection/refraction events terminating at a (pinhole) camera.
Recently, concurrent work by Zeltner et al. [2020] presented

a specular manifold sampling technique, which is able to handle
glints, reflective/refractive caustics, and specular-diffuse-specular
light transport. Their method could also theoretically handle multi-
bounce pure specular light transport. Ours is a deterministic ap-
proach, while theirs combines deterministic root finding with sto-
chastic sampling in a Monte Carlo setting. The methods could also
plausibly be combined, e.g. by using our path cuts to initialize their
manifold sampling.

Interval arithmetic is a general method to turn a mathematical
function (represented as an expression or a program), into a function
that takes intervals as inputs and returns them as outputs, conserva-
tively bounding the possible outputs of the original function. This
works for both scalar and vector inputs and outputs. In graphics ap-
plications, 3D intervals (equivalent to bounding boxes) are common,
with operators like dot product, norm and normalization frequently
applied to such intervals. Mitchell and Hanrahan proposed the use
of interval arithmetic for isolating specular paths already in 1992, in
the paper discussed above. Velazquez-Armendariz et al. [2009] apply
interval arithmetic to bound complex shader programs, representing
reflectance functions including spatial variation and anisotropy. We
use interval arithmetic to conservatively bound the possible normals
and half vectors within a region of the scene; if these intervals have
no intersection, we know there cannot be an admissible specular
path and can reject further computation in this region of path space.

Glint rendering methods [Yan et al. 2014, 2016] turn the specular
path finding problem to querying the distribution of normals of a
surface patch around a shading point at the half vector between the
incident and outgoing directions, which was later extended to han-
dle wave optics effects [Yan et al. 2018]. These methods are limited to
one bounce, and more importantly, can only support bump/normal
mapped surfaces, otherwise the concept of a local normal distribu-
tion is not clearly defined. Jakob et al. [2014] proposed an procedural
glints rendering approach, which is limited to random distributed
appearance. More recently, Kuznetsov et al. [2019] proposed to use
a generative adversarial network to procedurally generate specu-
lar glints from given examples with desired visual characteristics.
In comparison, our method is able to solve for explicit multiple
specular bounces (reflections and refractions), and works for both
bump/normal mapped surfaces and actual geometric primitives,
possibly with differing geometric and shading normals. We provide
a comparison of our result for single reflection to Yan et al. [2014],
using very low roughness in their method.

Lightcuts [Walter et al. 2006, 2005] is a many-light method de-
signed to render direct and global illumination using virtual point
lights. The lights are organized in a hierarchical data structure.
During rendering, the hierarchy is traversed top-down, based on
whether the contributions of all the lights within a node can be
approximated well enough. In multi-dimensional lightcuts, there is
an additional hierarchy on the gather (shading) points, and the two

Fig. 2. Left: 2D spatial hierarchy of a surface, where each node records
the range of normals (blue lobes) and positions (pink rectangles). Right: an
illustration of a path cut.

hierarchies are traversed in parallel. Inspired by the idea of light-
cuts, we propose path cuts to organize all the triangles, whether
geometric or tessellated from bump/normal maps, into a hierarchy.
We use the path cuts to efficiently prune non-contributing areas of
the path space; i.e. regions where the alignment of the normal and
half vectors is guaranteed to be impossible.

3 PATH SPACE TRAVERSAL USING PATH CUTS
For each number of bounces 𝑘 the problem needs to be solved
independently; different path types of a given length are themselves
independent. In the following, we will assume a given fixed number
of bounces 𝑘 and a fixed path type, e.g. TT (transmit-transmit), TRT
(transmit-reflect-transmit), etc.

Suppose we want to find a 𝑘-bounce specular path that connects a
point light 𝐿 and a pinhole camera (eye) 𝐸, thus the total number of
path vertices is 𝑘+2, with 𝑘+1 segments. The path bounces at points
x𝑖 on scene surfaces M, defined as general triangle meshes with
interpolated normals. (This simplifies our implementation and ex-
position, though extensions to other surface representations would
be possible.) Thus in the following, we assume our scene geometry
is composed of 𝑛 triangles 𝑇𝑖 .

Our idea is to first isolate all 𝑘-tuples of triangles that could give
rise to an admissible path, then find those paths within the 𝑘-tuple
using a root solver. In this section, we focus on the first part, finding
potentially contributing 𝑘-tuples of triangles.

3.1 Path cuts for hierarchical pruning
To find 𝑘-bounce paths of a given type, the most straightforward
way is brute-force: loop over all 𝑘-tuples of primitives (𝑇𝑗1 , · · · ,𝑇𝑗𝑘 ),
then consider potential paths

𝐿 → (x1 ∈ 𝑇𝑗1 ) → (x2 ∈ 𝑇𝑗2 ) → · · · → (x𝑘 ∈ 𝑇𝑗𝑘 ) → 𝐸. (1)

This simple approach is certainly too slow: its time complexity is
𝑂 (𝑛𝑘 ) for 𝑛 triangles and 𝑘 bounces. To improve performance, we
build a tree hierarchy H over the set of scene surfaces M. Each
node 𝑆𝑖 ∈ H represents a surface patch on M (normally a set of
spatially grouped triangles), and records the 3D interval (bounding
box) 𝑁𝑖 of all surface normals and the 3D interval (bounding box)
𝑃𝑖 of all surface positions in this patch. Note that this "root" path
cut is for the entire image, as our method is independent of pixels.

When looking for a specular path of a given type with 𝑘 bounces,
we consider a product hierarchy H𝑘 = H × · · · × H : a 𝑘-tuple of
copies of hierarchyH . Now suppose we choose a 𝑘-tuple of nodes
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Fig. 3. Left: for any node 𝑆𝑖 , we calculate all of its incident and outgoing
directions in a path cut. Right: to validate a path cut, at every node 𝑆𝑖 along
a path cut, we calculate the range of its half vectors, and compare it with
the range of normals stored in this node.

(𝑆 𝑗1 , · · · , 𝑆 𝑗𝑘 ) ∈ H𝑘 ; an analogy to the pair of hierarchies in multi-
dimensional lightcuts [Walter et al. 2006]. Now consider a “thick
path”: the set of all paths from the light to the camera whose vertices
are within the corresponding nodes

𝐿 → (x1 ∈ 𝑆 𝑗1 ) → (x2 ∈ 𝑆 𝑗2 ) → · · · → (x𝑘 ∈ 𝑆 𝑗𝑘 ) → 𝐸 (2)

We denote such a “thick path” as a path cut, in analogy to multi-
dimensional lightcuts. This is illustrated in Fig. 2.
Our insight is that, if we can quickly determine whether a path

cut potentially contains an admissible specular path, we can use
this information to prune the path space to quickly converge to con-
tributing paths. So, the first question is how to determine whether
a path cut can contain an admissible specular path. The answer
to this question should be conservative: existence of one or more
admissible paths has to be always correctly detected. The reverse
need not be true: if we cannot prove non-existence, we can always
subdivide the path cut.

3.2 Validating a path cut
Recall that a pure specular path is admissible if at each surface
bounce, the normal vector is alignedwith the (reflective or refractive)
half vector. For a path cut, we are able to test locally if every node
is potentially able to produce such an alignment. See Figure 3.

To do that validity check, we use interval arithmetic. For a given
hierarchy node 𝑆𝑖 , we record a 3D interval 𝑃𝑖 that bounds all the
positions of surface points in 𝑆𝑖 , and a 3D interval 𝑁𝑖 that bounds
all the normals of 𝑆𝑖 . Some of these intervals could be trivial, i.e.
contain only a single point, which is a valid interval. We also treat
the camera and light positions as such trivial intervals.
For a given node 𝑆𝑖 , all possible incident directions from 𝑆𝑖−1 to

𝑆𝑖 can then be bounded using the following interval expressions:

𝐷𝑖in = normalize(𝑃𝑖−1 − 𝑃𝑖 ), (3)

where both 𝑃𝑖 and 𝑃𝑖−1 are interval boxes (3D vectors with interval
elements) that bound the positions, and the normalize function takes
and returns an interval box, as shown in Figure 4. Similarly for the
outgoing directions from 𝑆𝑖 to 𝑆𝑖+1, we have

𝐷𝑖out = normalize(𝑃𝑖+1 − 𝑃𝑖 ) . (4)

Bounding the reflective half vectors𝐷 of all the incident-outgoing
direction pairs is then achieved by the interval expression

𝐻𝑖 = normalize(𝐷𝑖in + 𝐷𝑖out), (5)

and similarly for refractive half vectors, where additional scaling by
indices of refraction is needed.

To detect whether this interval of all half vectors 𝐻𝑖 and the in-
terval of all normals 𝑁𝑖 can align, we can check whether interval
intersection 𝐻𝑖 ∩ 𝑁𝑖 is non-empty. This simply entails checking
whether the two intervals (bounding boxes) intersect. To deter-
mine the entire path cut’s validity, we check the intersection for all
bounces 𝑖 . It allows us to stop the computation for the entire path
cut as long as at least one 𝑁𝑖 ∩ 𝐻𝑖 is empty.

3.3 Subdividing a path cut
Once we know that a path cut has potential to contribute a pure
specular path, we subdivide this path cut. The most straightforward
way is to subdivide all non-leaf nodes along the path. It is also
possible to randomly choose a node to subdivide. We propose to
always subdivide the node with the largest bounding box.

As we repeat the subdivision process, finally we will end up with
path cuts that consist of only leaf nodes, i.e. one triangle per bounce.
In this case, we proceed to the next stage to actually find a pure
specular light path within this region of path space.

Discussion. For the subdivision heuristics, we tried two solutions:
the node with the largest position bounding box, and the node
with the largest intersection interval 𝐻𝑖 ∩ 𝑁𝑖 , measured using the
maximum side length. We found the second solution visited more
nodes in the hierarchy (about 40%). Thus, we use the first solution
in our implementation.

4 SOLVING FOR A SPECULAR LIGHT PATH
Having determined the triangles 𝑇𝑖 at each bounce of the leaf path
cut, we now need to solve for a specular light path

𝐿 → (x1 ∈ 𝑇1) → · · · → (x𝐾 ∈ 𝑇𝐾 ) → 𝐸, (6)

and find its contribution to the image plane.

4.1 Finding an admissible path
Finding such a light path is trivial if the triangles are flat mirrors
(i.e. they do not have interpolated shading normals distinct from
the geometric normal). We just need to repeatedly take the virtual
image of the point light across the plane containing 𝑇𝑖 and finally
connect it to the camera. However, this does not cover common
situations with refractions and normal interpolation (curvature). In
the general case, we need to find the vertex locations using a root
solver.

We represent positions within each triangle 𝑇𝑖 using barycentric
coordinates (𝛼𝑖 , 𝛽𝑖 ). The third component 𝛾𝑖 is implied by 𝛼𝑖 +
𝛽𝑖 + 𝛾𝑖 = 1. With this representation, given any position x𝑖 (𝛼𝑖 , 𝛽𝑖 ),
we know its interpolated normal n𝑖 (𝛼𝑖 , 𝛽𝑖 ). At the same time, the
incident and outgoing directions can be calculated by normalizing
x𝑖−1 − x𝑖 and x𝑖+1 − x𝑖 . This lets us compute the half vector at
x𝑖 , denoted as h𝑖 (𝛼𝑖 , 𝛽𝑖 ). Note that the half vector notation here is
general, which can be either reflective or refractive [Walter et al.
2007]. By convention, we assume all normals and half vectors point
into the medium with the lower index of refraction (usually though
not necessarily air). With the above definitions, we can write a
constraint function

C𝑖 (𝛼𝑖 , 𝛽𝑖 ) = n(𝛼𝑖 , 𝛽𝑖 ) − h(𝛼𝑖 , 𝛽𝑖 ) (7)
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Fig. 4. Left: calculating the interval of all the possible incident directions 𝐷𝑖
𝑖𝑛

from node 𝑆𝑖−1 to node 𝑆𝑖 . Right: testing if the interval of half vectors overlap
the interval of the normals.

whose roots correspond to admissible local bounces on triangle 𝑇𝑖 ,
with the additional barycentric constraint 𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0, 𝛼𝑖 + 𝛽𝑖 ≤ 0.
We finally stack all constraint functions along the path into an
overall constraint

C(𝛼1, 𝛽1, . . . , 𝛼𝑘 , 𝛽𝑘 ) = (C1, . . . ,C𝑘 ). (8)

Therefore, the constraint function has 2𝑘 variables and 3𝑘 output
values. (An alternative with 2𝑘 output values can be defined by
projecting the normals and half vectors into the local geometric
space, and dropping their 𝑧 coordinates. We found this alternative
formulation gives equivalent results and is slightly slower due to
the extra vector transformations.)

As we discuss later in sec. 4.3, the constraint will have a discrete
number of roots. Finding the roots of this constraint function means
that the surface normals and half vectors match at all bounces, which
gives us an admissible pure specular light path. This approach is sim-
ilar to the target function of Walter et al. [2009] and the constraint
function of Jakob et al. [2012]. We use automatic differentiation
of the constraint, using the autodiff component of the Eigen C++
library. This gives us automatic support for all required cases.

We use Newton iteration to find the root of the constraint function
C, iteratively approximating it as locally affine, and finding the root
of this affine approximation. This requires solving a 3𝑘 × 2𝑘 linear
system, in the least-squares sense, at each iteration. We solve this
by inverting the least squares system using normal equations; this
is equivalent to Walter et al.’s approach, except we have potentially
more dimensions due to handling multiple bounces. We bound the
maximum number of iterations to 5. If after reaching the maximum
iterations, the resulting vertices are not all within their respective
triangles, we assume there is no solution. A slower version of New-
ton’s method with strong guarantees on finding all solutions can
also be used, though the difference in practice is minimal, and the
cost can be prohibitive, as discussed later in sec. 4.3.
When a light path has been found, we perform a visibility test

for the 𝑘 + 1 segments along this path. If no segments are blocked
in the middle, the path will be accepted and contribute to the image
plane. The visibility test can be skipped for objects known to be
convex. Next, we describe how to calculate a path’s contribution to
the image plane.

4.2 The contribution of an admissible path
The contribution of the path to the image consists of the product
of several terms: visibility (already handled above), light intensity,
the product of Fresnel terms along the path, volumetric absorption,
the generalized geometry term, and the pixel importance function
value. Below we discuss the last two terms; all other terms are
straightforward to include.
For both of these terms, we will need to precisely define our

camera model as a pinhole camera, with a sensor plane at a distance
of 1 world unit from the camera position (pinhole). For the purposes
of the explanation below, the camera endpoint 𝑃 of the path is thus
on the sensor, not on the pinhole 𝐶 itself.

Pixel importance function value. Consider a ray (𝑃,𝜔) leaving
the sensor point 𝑃 in direction 𝜔 = normalize(𝐶 − 𝑃). Denote the
importance function of a single pixel (𝑖, 𝑗) as𝑊𝑖 𝑗 (𝑃,𝜔). We will
need to include the corresponding𝑊𝑖 𝑗 in the path contribution.
This importance function should be normalized to integrate to

1, but in which units? These units cannot be pixels, otherwise the
brightness of specular contributions would change with image reso-
lution. Instead, we find that the normalization has to be with respect
to real world units, on the image sensor at a distance of 1 unit from
𝐶 .

We can easily check if the direction is outside of the view frustum,
in which case the value is zero. Otherwise, if the horizontal field-
of-view is \ and the aspect ratio (height/width) is 𝑟 , the area of the
image plane in world units is

𝐴 = 4𝑟 tan(\/2)2,

because the image width and height are 2 tan(\/2) and 2𝑟 tan(\/2),
respectively. The function𝑊 (𝑃,𝜔) should be normalized across the
image plane, so its value is

𝑊𝑖 𝑗 (𝑝,𝜔) =
𝐾𝑖 𝑗 (𝑃)𝑚𝑛

𝐴
.

Here we first define 𝐾𝑖 𝑗 (𝑃) to be the pixel reconstruction filter
normalized in pixel units, and then include the additional factor of
𝑚𝑛
𝐴

to make𝑊𝑖 𝑗 normalized in world units.
Note that real cameras are “photon counters”, so smaller pixels

record less light, thus image brightness will depend on resolution.
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In rendering, however, we usually use a “radiance meter” instead of
a “photon counter” model for cameras: we would like the final pixel
values to be in units of radiance, not photon flux, and we generally
do not prefer brightness to change with image resolution. The above
solution implements the radiance meter model, and could be easily
modified to the photon counter model.

Generalized geometry term. We use the terminology “general-
ized geometry term” (GGT), which was introduced by Jakob and
Marschner [2012]; however, Mitchell and Hanrahan [1992] and Wal-
ter et al. [2009] have included the equivalent term before, referring
to it as “intensity” or “distance correction factor”, respectively.

This term is essentially the Jacobian determinant of a ray propa-
gation function (it is also related to wavefront Gaussian curvature,
as noted by Mitchell and Hanrahan). To compute the Jacobian, we
simply need to compute gradients of such ray propagation func-
tions over specular paths. We could do that using automatic dif-
ferentiation; however, ray differentials already give the solution to
this exact problem explicitly [Igehy 1999]. Walter et al. [2009] and
Holzschuch [2015] also use ray differentials to derive the value of
the term for a single refraction. We show the approach works for
any number of reflections and refractions.

Consider the ray propagation function 𝐹 : R2 → R2 that maps a
neighborhood of the camera sensor point 𝑃 through the admissible
specular path x̄ to the imaginary plane crossing the point light
position, orthogonal to the last path segment. The GGT is the value

𝐺 (x̄) = 1/| det 𝐽𝐹 (𝑃) |, (9)

where 𝐽𝐹 (𝑃) is the Jacobian of 𝐹 , a 2 × 2 matrix for a given value of
𝑃 .
We initialize position differentials 𝑃𝑥 and 𝑃𝑦 of unit length on

the camera sensor plane, and trace them along the specular path to
the imaginary plane crossing the point light position, orthogonal to
the last path segment, finding the final position differentials 𝐿𝑥 and
𝐿𝑦 . Finally, we can compute the GGT as

𝐺 (x̄) = 1/|𝐿𝑥 × 𝐿𝑦 |, (10)

where × denotes the cross product.
Finally, note that the value |𝐿𝑥 × 𝐿𝑦 | can become very small or

even zero, causing singularities. This occasionally leads to glints
that are unnaturally bright, potentially infinite. This may seem
paradoxical but is actually correct in the framework of geometric
optics on pure specular surfaces; the same issue was also noted by
Yan et al. [2014] in the single specular reflection context. This is
not observed in reality, where light transport does not follow this
idealized framework; geometric optics and perfect specularity are
always violated to some extent in the real world. Therefore, we
optionally regularize the cross product value as

|𝐿𝑥 × 𝐿𝑦 | ≈ ∥𝐿𝑥 ∥ · ∥𝐿𝑦 ∥·
max(𝜖, |normalize(𝐿𝑥 ) × normalize(𝐿𝑦) |), (11)

as we observed that the low values are typically due to almost
parallel 𝐿𝑥 and 𝐿𝑦 , not due to ∥𝐿𝑥 ∥ or ∥𝐿𝑦 ∥ being close to zero.
A value of 𝜖 = 0.01 works well in general. We observe that this
regularization solves the issue of occasional very bright glints, while
not affecting the remaining glints.

Fig. 5. Rendered results of RR light transport on the Deer scene.

Fig. 6. Rendered results of TT light transport on the Double Slab scene.

4.3 Multiple solutions
The previous treatment assumed that there is at most one solution
for an admissible path within a leaf path cut, and that this solution
will be found by Newton’s method if it exists. While these properties
appear to be generally true in our experiments, they are not theoret-
ically guaranteed. In the following, we will discuss how to find all
discrete solutions with extra effort, as well as theoretically discuss
the impossibility of infinite solution regions in our current surface
representation based on triangles with interpolated normals.

Finding all discrete solutions. Even if a single solution exists, stan-
dard Newton’s method still does not theoretically guarantee that the
solution will be found. Furthermore, there is a possibility of multiple
discrete solutions. Both of these issues can be theoretically handled
with the interval version of Newton’s method, as suggested by
Mitchell and Hanrahan [1992] and Walter [2009]. Specifically, both
of these works used the approach introduced by Krawczyk [1969],
which only requires a (pseudo-)inversion of a standard non-interval
matrix. We also implemented this method.
However, even though this approach is theoretically sound, our

experiments indicate that the results tend to be visually equivalent
to the simpler Newton’s method (see Fig. 15). The major added
computational expense is not generally worth the effort, and we
do not currently use this approach in our results. Our meshes are
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Table 1. Scene settings, computation time and memory costs for our test scenes. #Tri. is the count of triangles in the scene. Type means the type of light
transport, such as Reflection-Reflection, Transmittance-Transmittance, or Transmittance-Reflection-Transmittance. Traversal means path cut hierarchical
pruning until a path consisting of leaf nodes, Newton solving means solving for specular light paths with Newton solver, and splatting means projecting the
specular light paths to the screen space and computing the pixel radiance. #Glint is the glint count.

Scene Fig. #Tri.(K) Material. Type Time (sec.) Memory (MB) #Glint

Traversal Newton solving Splatting Total

Deer Fig. 5 9210.5 Metal RR 4.51 1.86 0.07 6.44 1000.87 12902
Single Slab Fig. 12 500 Metal R 0.16 0.05 0.034 0.24 56.47 5135
Double Slab Fig. 6 1000 Glass (1.50) TT 1.00 0.32 0.095 1.42 112.94 16323
Double Slab Fig. 8 1000 Glass (1.50) TRT 5.46 6.42 0.072 11.95 112.94 9454
Double Slab Fig. 10 2000 Glass (1.50) TTTT 42.76 51.65 0.014 94.42 225.87 721
Splash Fig. 1 49.8 Water (1.33) TT 6.36 1.13 0.008 7.50 4.64 174
Splash Fig. 1 49.8 Water(1.33) TRT 135.32 345.35 0.009 480.68 4.64 212
Stained Glass Fig. 9 205.5 Glass (1.50) TT 30.28 22.73 0.018 53.03 20.84 3502

Fig. 7. Rendered results for varying bump frequencies on the Double Slab scene.

already subdivided to small enough triangles, so multiple solutions
within a single triangle do not frequently occur in practice.

Specifically, we ran experiments with interval Newton method for
single reflection (R) and double transmission (TT) configurations. In
the reflection case, we find that with interval Newton method, 5015
solutions are found; without intervals, there are 5007 found. In the
TT case, 1052 solutions are found by interval Newton method, while
1036 are found by regular Newton. The final renderings in these
experiments are visually equivalent between regular and interval
Newton method when viewed side-by-side.

We note that in either case (R and TT), the regular Newton so-
lutions are not a perfect subset of the interval Newton solutions; a
small number of regular solutions are not among the interval solu-
tions. This is because the final Newton refinement is subject to an
epsilon value (0.00001 in these tests): some solutions may be found
that satisfy the epsilon but are not true roots, and these special cases
differ between the two methods.

In the TT case, the interval Newton solution case costs 23 hours
while the regular (non-interval) solution is found in 0.6 seconds. The
massive additional cost is not due to the evaluation of the additional
interval conditions (which add a fairly minor expense), but due to
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Fig. 8. Rendered results of TRT light transport on the Double Slab scene.

the fact that very fine subdivision is required until the conditions
are able to prove the uniqueness of solutions.

Infinite solution regions. For general surface representations, infi-
nite solution regions are possible for pure specular paths. Consider,
for example, a cylinder that is reflective on the inside. A light and a
camera are placed at the centers of each of the two caps of the cylin-
der. The circle at the middle of the cylinder now gives an infinite set
of solutions where the normals are aligned with the half vectors.

Note, however, that ourmethod does not currently support quadric
primitives such as cylinders, only triangle meshes with linearly in-
terpolated normals. With this primitive type, infinite regions of
solutions are not possible. At a high level, the reason is that the
half vector function will always contain non-linear terms, which
make it impossible to match the affine function given by normal
interpolation (before normalization) over any infinite continuous
region. This argument is expanded in Appendix A.1.

5 RESULTS AND COMPARISON
We have implemented our algorithm inside the Mitsuba renderer
[2010]. All timings in this section are measured on a 2.20GHz Intel i7
(40 cores) with 32 GB of main memory. Unless otherwise specified,
all timings correspond to images with 2048× 2048 pixels, except the
Splash Scene with 1920 × 1080 pixels. In most of our results, we use
a bloom filter (with a wide radial kernel) to make the intensity of the
glints more perceptible; this is just an image-space post-process and
not part of our core method. For most results, we provide two ver-
sions: one with specular paths from point lights only and the other
with both point light and environment lighting. For environment
lighting, the image component is computed using conventional path
tracing and is completely orthogonal to our specular path method
(the results are linearly combined).

5.1 Our scenes
In Table 1, we report all settings, computation times and memory
cost for our test scenes. Below we discuss the specific scenes. We
visualize the performance for different triangle counts within a fixed
scene in Figure 16. Note that within a fixed scene, more subdivision
inflicts only a small overhead on the performance, and the memory

cost increases linearly. However, between scenes, and for different
path types, the costs can differ dramatically.

Deer. Figure 5 illustrates three metallic characters on a bumpy
plane under a point light and environment lighting. All objects
are finely tessellated and the vertex positions are displaced with
isotropic noise fields. The side objects are more rough (more noise
displacement) than the object in the middle. The bumpy plane and
the middle deer uses aluminum, the left deer uses copper and the
right deer uses gold; these are just Fresnel term variations. We
simulate the RR (reflection-reflection) pure specular light transport
in this scene.

Double Slab. Figure 6 shows a slab of two refractive interfaces,
whose vertices are displaced with a 512 × 512 height field. Both
interfaces have a glass material assigned (index of refraction 1.5).
A point light source is located below the bottom interface, and the
camera is above the top interface.We simulate the TT light transport
(transmittance-transmittance) in this scene. Note that this path type
is very fast; our method took just 1.42s.

In Figure 7, we show results (TT light transport) of the Double Slab
scene with different tessellation levels. As the height field resolution
increases, both the glint counts and the rendering cost increase.
In Figure 8, we show the results of TRT light transport. Here the
point light is placed at the same side as the camera. As expected,
the rendering cost is more higher when rendering three bounces.

Splash. Figure 1 illustrates a splash with a water material under
four point lights and environment lighting. We simulate the TT light
transport in this scene. For this scene, we also compare the results
rendered with path cuts to a brute force evaluation, by looping all
pairs of triangles and using Newton solver to find the roots. They
produce identical results, while the brute force approach is 300x
slower than our method.

Stained Glass. Figure 9 illustrates a stained glass window with a
glass material under eight point lights and environment lighting.
The glass also features colored absorption in this case. We simulate
TT light transport in this scene.

5.2 Comparisons to previous methods
We compare our results to path tracing with regularization, and to
previous methods handling the subproblems for a single reflection
[Yan et al. 2014] and a single refraction [Walter et al. 2009].

In Figure 10, we compare our method with path tracing. We use
two double slabs, solving for TTTT light transport (four transmis-
sions). To render this scene with path tracing, we use a microfacet
model [Walter et al. 2007] to represent it, and slightly increase the
roughness of the surface (𝛼 of 0.001). Despite the regularization,
we found the distribution of the glints between our method and
path tracing are overall similar. Meanwhile, we measure the total
energy of the two images and they have the same magnitude. On
the other hand, path-tracing is extremely slow to converge in this
scene. We demonstrate this in Figure 11. We choose a single pixel
and compute its radiance as a function of samples per pixel. the
figure shows that the path tracing does not converge to a final
value even with millions of samples. We also provide the result of

ACM Trans. Graph., Vol. 39, No. 6, Article 238. Publication date: December 2020.



Path Cuts: Efficient Rendering of Pure Specular Light Transport • 238:9

Fig. 9. Rendered results of TT light transport on the Stained Glass scene.

Fig. 10. Comparison between our method, path tracing and manifold explo-
ration metropolis light transport (MEMLT) for TTTT light transport on the
Two Double Slabs scene.

manifold exploration metropolis light transport (MEMLT) [Jakob
and Marschner 2012]. This method only explores specular subpaths
ending on a non-specular surface, so it has no specific estimators
available to address pure specular paths. We increase the roughness
of the surface (𝛼 of 0.001) and replace the point light source with a
tiny spherical area light. With 16K mutations (3.66 hours), the result
is still not converged.

Yan’s method computes a single reflection from a normal-mapped
surface, which can be easily converted to our representation. Their
method assumes non-zero roughness, but works for very small
values; here we compare our pure specular solution to theirs with
an intrinsic roughness value of 0.00001. The result is in Figure 12.
The visual agreement is close, despite very different algorithms. The
brightness of some glints is slightly different due to the intrinsic
roughness and different approximations made by Yan et al.
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Fig. 11. Radiance of a single pixel as a function of samples per pixel in the
path traced image of two double slabs (TTTT, four transmissions). Note
the horizontal axis is logarithmic, showing that the path tracing does not
converge even with millions of samples per pixel.

Walter’s method computes single scattering in a medium with a
refractive boundary. This requires integration along the refracted
camera ray; for each scattering point on the ray, a connection to the
point light source is found through a search for a valid refraction
point on the boundary. While focused on single scattering, the
search problem that is solved for a given scattering point on the ray
is identical to our problem of constructing a pure specular path; we
can thus replace this computation with our method. The result is
shown in Figure 13. The two solutions closely match, and perform
similarly, despite the completely separate code bases. Note that a
later approach by Holzschuch [2015] performs better on this specific
problem, but his solution is more specialized for single scattering
and no longer constitutes pure specular path search.

5.3 Seeding MLT with our result
We introduce a variant of Metropolis light transport, seeded with the
specular paths found by our method, where each seed path becomes
an independent Markov chain for computing an image with non-
zero roughness. The mutations are applied to path vertex positions
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Our Result (R), Time: 0.24s
Glint count: 5135

Yan et al. [2014] (R), Time: 61.8 s
insintric roughness: 0.00001  

Our Result (R + environment lighting) Yan et al. [2014] (R + envir. lighting)

Fig. 12. Comparison between our method and Yan et al. [2014] with a slightly rough surface (intrinsic roughness 0.00001), for a single reflection. Note the
close visual match, despite very different algorithms. Some difference in glint brightness is caused by the intrinsic roughness.

Walter et al. [2009], 512 spp, Time: 7.1 minOurs, 512 spp, Time: 6.7 min

Fig. 13. Comparison between our method and Walter et al. [2009] on single
scattering of a bumpy sphere scene with a volumetric medium within a
refractive boundary. Our method is applied to find the connections from
scattering points along the camera ray to the point light. The match between
the images is close despite separate algorithms and code.

in texture coordinates; the mutation proposals are Gaussians in
the texture space. The path contribution function uses a standard
microfacet BRDF with low roughness (0.01), instead of our pure
specular path contribution discussed above. Since the mutations do
not significantly perturb the paths, we currently assume no visibility
changes due to mutations, which speeds up the approach further.
The result matches path-tracing with low roughness but is more
efficient; see Figure 14.

This method is related to Bitterli et al. [2019]. They also generate
some paths as seeds, but they use MLT to spread the energy and
eliminate fireflies, while our method is for re-computing the energy-
carrying paths in a new scene with glossy materials. Seeding MLT
with our method also has several advantages over the original MLT
or MEMLT, which generally suffer from two issues: getting stuck
in sub-regions of the path space, and costly path mutations. Our
example does well when dealing with these two issues, since our
pure specular seeds cover the relevant parts of path space well.
As the mutations are very local, we can also assume unchanged
visibility, greatly lowering the cost.

6 DISCUSSION AND LIMITATIONS
There are several challenges not yet solved by our approach. First,
the path length handled in our results is up to four specular bounces.
For higher numbers of bounces, the search becomes expensive, as the
number of actual solutions becomes combinatorially larger (so they
cannot be pruned even with idealized pruning heuristics). Therefore,
we cannot hope to deterministically enumerate all valid paths, but
may still be able to find the perceptually relevant ones. This is an
exciting problem for future work.
Furthermore, if one desires a hard guarantee of finding all con-

tributing light paths of a given type, the interval Newton method
needs to be used, which is slow and inconvenient. The problem of
finding an efficient and yet conservative method remains open.
Finally, our interval arithmetic heuristics are conservative, and

work reasonably in practice, but are not guaranteed to give the
tightest possible bounds. It may be possible to further improve
performance by using different bounding volumes, in addition to
axis-aligned boxes.

Extending our method to handle displacement-mapped or normal-
mapped geometry would be straightforward. An on-demand sub-
division is first determined per geometric primitive based on local
complexity of the displacement / normal map. Then every vertex is
updated either by alternating its position or modifying its normal
directly. The updated vertices then participate in follow-up opera-
tions as usual, including position-normal hierarchy construction,
Newton iterations, and Jacobian computations. The other steps are
exactly the same.
To extend the proposed MLT application to spatially-varying

(textured) roughness, we would need three changes. First, during
the position normal hierarchy construction, an additional roughness
range is computed and stored for each node. Second, during the
hierarchical traversal or path cut pruning, when validating a path cut
(by intersecting the intervals of the half vector and the normal), the
maximum roughness of that node is used. Third, when computing
the contribution of a path, the roughness of each vertex along the
path is obtained from the roughness map and then used for path
contribution evaluation.
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Fig. 14. An image rendered using variant of Metropolis light transport, seeded with the specular paths found by our method, where each seed path becomes
an independent Markov chain for computing an image with non-zero roughness. Our result matches path tracing with low roughness (note the anisotropic
highlight shapes, which are not possible with zero roughness), but is more efficient.

Fig. 15. Comparison between our method with and without the interval
Newton method. There differences are visualy minimal, although interval
Newton is much more costly.
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Fig. 16. (a) and (b): The impact of the triangle count on both the performance
and storage costs in theDouble Slab scenewith different levels of subdivision.
(c): The impact to the performance in the Double Slab scene of various glint
counts, obtained by modifying the scales of the height field.

7 CONCLUSION AND FUTURE WORK
While many light transport methods have been devised to sample
various kinds of light paths, none of them are able to find multi-
bounce pure specular light paths from a point light to a pinhole
camera. We presented path cuts, the first method able to render this
component of light transport explicitly.

We use a path space hierarchy combined with interval arithmetic
bounds to efficiently prune non-contributing regions of path space,
and to slice the path space into small region where the search prob-
lem becomes local. Finally, we isolate admissible specular paths by
a Newton solver applied to a constraint function, whose gradients

are computed by automatic differentiation. We discuss in detail how
such discovered paths should contribute to the image plane.
Our results show a number of geometrically complex scenes

with many thousands of valid specular paths of up to four bounces,
reflective and refractive. Our results closely agree with previous
methods that solve related problems in the special cases of a single
reflection/refraction.
We believe our approach fills a long-ignored gap in light trans-

port algorithms, and we are interested in improving it further, by
considering longer paths or more complex light transport models
(e.g. based on wave optics).
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A APPENDIX

A.1 Impossibility of infinite solution regions
Wewill sketch the argument for single bounce; for multiple bounces
it is analogous. Assume we are looking for a single reflection or
refraction at point 𝑋 on a triangle. The linearly interpolated normal
at point𝑋 (before normalization) can be written as an affine function
𝑁 (𝑋 ). The half vector 𝐻 (𝑋 ) at point 𝑋 can be written as:

𝐻 (𝑋 ) = 𝑐 (𝑋 )
(
[1

𝑋 − 𝐸
∥𝑋 − 𝐸∥ + [2

𝑋 − 𝐿
∥𝑋 − 𝐿∥

)
, (12)

where [1 and [2 are the indices of refraction on the camera and
light side (they will be equal for reflection), and 𝑐 (𝑋 ) is any scalar
function. This expresses the fact that we are free to arbitrarily scale
the half vector (normal), as its length does not matter. However, this
added freedom is not enough; there is no scalar function 𝑐 (𝑋 ) that
would succeed in canceling the non-linear terms in the definition to
make the function match the vector function 𝑁 (𝑋 ) over an infinite
region; equality can only be achieved for discrete points 𝑋 .
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