
C philosophy: small is beautifulC philosophy: small is beautiful

Is underlying philosophy of Unix too
Each program does just one thing
– Pipe together to do more complicated things
– Applies at level of C functions too

Less typing is better than more typing
– Is why Unix commands are so short – ls, cp, mv, …
– C programs are usually written tersely too

Users/programmers know what they are doing
– So brevity works, and few restrictions apply



C data types and variablesC data types and variables
A variable name refers to a memory location
– Compiler must know the data type stored there

Just a few basic types (most sizes vary)
– char – 1 byte (8 bits) – number represents a character
– int – for integers
– float and double – for floating point numbers

Also some qualifiers – modify the basic types
– short, long – apply to int (and long double too)
– unsigned – apply to int and char – positive values

Must declare variable before using it
– e.g., int x; – now can store an integer: x = 17;



C constantsC constants
Integers, floats, characters, and C strings:
– 15, 017, 0xf – same value in dec, oct, hex
– 0.0012, 1.2e-3 – regular and scientific floats
– ‘c’, ‘\n’ – individual chars; also “string”

Symbolic constants – e.g., #define  MAX  50
– Text substitution by C preprocessor – more later
– New way borrowed from C++: int const MAX = 50;

Enumerations – e.g., enum state { in, out };

– Type is enum state – in, out are particular values



C function basicsC function basics
Must be declared before use
– Can do with forward declaration (prototype):

e.g., long multiply (int, int);
Parameter names are optional in prototypes

Must be defined somewhere (for linker)
– Definition includes header and function body
– Parameter names are required

Parameters are always copies of argument values
– return – required if type is not void

Value returned is also a copy



Arrays and character stringsArrays and character strings
Declare array and fixed size at same time
– int x[50]; /* size must be a constant */
– May not reassign array name: x = … /* illegal */

C string: a char array, terminated by ‘\0’
– e.g., int length(char s[]) {/* string length */

int i;
for (i = 0; s[i] != ‘\0’; i++);
return i;

} /* note: size of array is probably greater */
See character and string processing demo 
programs in ~mikec/cs12/demo01/
– Also shows simple input/output and C program form



Formatted printing to Formatted printing to stdoutstdout
printf(format, value, value, …);
– format – a string with descriptors for each value

To print a string variable – use %s descriptor: 
printf(“my string is %s”, stringvar);
To print a constant string – no descriptors/values
– Or use puts(“…”) – prints ‘\n’ at end of string too

To print an integer (decimal) and a float – %d, %f:
– printf(“int is %d, float is %f”, ivar, fvar);

– Or describe the field width and/or precision to print: 
printf(“int is %5d, float is %8.2f”, ivar, fvar);

More printf in KR chapter 7 – and see appendix B



C PointersC Pointers
What are C pointers?
– Ans: variables that store memory addresses

i.e., they “point” to memory locations
And they can vary – be assigned a new value

Background: every variable really has two values
int m = 37; /* What does the compiler do? */

(1) sets aside 4 bytes of memory (usually) to hold an int
(2) adds m and this memory address to a symbol table
(3) stores 37 (one value) in those 4 bytes of memory

– The other value – a.k.a. lvalue – is the memory address



** and and &&
The * has 2 meanings for C pointers
– (1) to declare a pointer variable:

int *p; /* now p can point to an int */
– (2) to dereference a pointer:

*p = 19; /* stores 19 at location p points to */
printf(“an int value: %d”, *p);

/* finds and prints the value where p is pointing */
The & retrieves a variable’s lvalue:

p = &m; /* points p at address where m is stored */
scanf(“%d”, &m); /* gets an input value for m */
scanf(“%d”, p); /* same as above in this case */



Pointer typesPointer types
Compiler knows type of data a pointer points to
– For dereferencing, and for pointer arithmetic

e.g., an  int * can only point to an int
Exception: a void * can point to any type
– e.g., double d = 1.5;

int x = 6, *ip;

void *vp = &d; /* vp points to a double */
vp = &x; /* okay, now vp points to an int */

– But cannot dereference vp directly – must cast first:
printf(“%d”, *vp); /* error */
ip = (int *)vp; /* now can dereference  ip */



Array names are not pointersArray names are not pointers
(but they are close)(but they are close)

int x[10]; /* What does this do? */
– Allocates 10 consecutive int locations
– Permanently associates x with the address of the first 

of these int locations – i.e., x always points to x[0]
So &x[i] is exactly the same as (x+i)
– And x[i] is exactly the same as *(x+i)

Also, if p is a pointer to int, then: 
– p = &x[0] is exactly the same as p = x

But x = p is illegal, because x is not really a pointer
– Then p[i] is an alias for x[i]
– ++p moves p to point at x[1], and so on


