
Pointer arithmetic Pointer arithmetic –– arrays onlyarrays only
Can add or subtract an integer – as long as result is
still within the bounds of the array
Can subtract a pointer from another pointer – iff
both point to elements of the same array

char word[] = “cat”;
/* create array of four chars: ‘c’‘a’‘t’‘\0’ */

char *p = word; /* point p at first char */
while (*p++ != ‘\0’); /* move pointer to end */
printf(“word length: %d”, p-word-1);

/* subtract one address from another – result is 3 */
But – no pointer multiplication or division, and
cannot add two pointers

/* copy t to s *//* copy t to s */
void stringcopy(char *s, char *t)

One way to implement – use subscript notation:
int i = 0;
while ((s[i] = t[i]) != ‘\0’) i++;

Another way – use the pointer parameters:
while ((*s = *t) != ‘\0’)
{ s++; t++; }

Usually just increment in the while header:
while ((*s++ = *t++) != ‘\0’);

And it’s possible to be even more cryptic:
while (*s++ = *t++); /* Actually works! */

MultiMulti--dimensional and pointer dimensional and pointer
arrays, and pointers to arraysarrays, and pointers to arrays

Multi-dimensional arrays – arrays of arrays
– int x[5][3]; /* allocates memory for 15 ints */
– Actually, 5 arrays, each able to store 3 integers

Arrays of pointers
– int *p[5]; /* allocates memory for 5 pointers */

for (i=0; i<5; i++) p[i] = x[i]; /* x as above */
Now p can be used as an alias for x

Pointers to arrays – require pointers to pointers
– int **px = x; /* points to first array in x */
– px++; /* moves pointer to next array */

Command line argumentsCommand line arguments
Declare main with two parameters
– An argument count, and an array of argument values
int main(int argc, char *argv[]) {…}

– argc = 1 plus the number of tokens typed by the user
at the command line after the program name

– argv[0] is the program name
– argv[1]…[argc-1] are the other tokens

Each one points to an array of characters (i.e., a C string)

Note equivalent way to declare second parameter
– char **argv – commonly used instead of above form

Can still use array notation, but also can argv++ and so on

sizeofsizeof

A unary operator – computes the size, in bytes,
of any object or type
– Usage: sizeof object or sizeof(type)

If x is an int, sizeof x == sizeof(int) is true

Works for arrays too – total bytes in whole array
– Sometimes can use to find an array’s length:

int size = sizeof x / sizeof x[i];

Actual type of result is size_t
– An unsigned integer defined in <stddef.h>
– Similarly, diff_t is result type of pointer subtraction

Especially useful to find the sizes of structures

C structuresC structures
Structures are variables with multiple data fields
e.g., define structure to hold an int and a double:
struct example{

int x;
double d;

};

Create a structure, and assign a pointer to it
struct example e, *ep = &e;

Now can access fields by e or by ep:
e.d = 2.5; /* use name and the dot ‘.’ operator */
ep->x = 7; /* or use pointer-to-structure-field ‘->’ operator */

Second way is short-cut version of: (*ep).x = 7;

Note: sizeof e >= sizeof(int)+sizeof(double)

typedeftypedef and macrosand macros

Can precede any declaration with typedef
– Defines a name for the given type:
typedef struct example ExampleType;

ExampleType e, *ep; /* e, ep same as prior slide */
– Very handy for pointer types too:
typedef ExampleType *ETPointer;

ETPointer ep; /* ep same as above */
Macros can simplify code too

#define X(p) (p)->x

X(ep) = 8; /* preprocessor substitutes correct code */

UnionsUnions

Can hold different data types/sizes (at different times)
e.g., define union to hold an int or a double:
union myValue{

int x;
double d;

} u, *up; /* u is a union, up can point to one */
Access x or d by u. or up-> just like structures
sizeof u is size of largest field in union
– Equals sizeof(double) in this case

Often store inside a structure, with a key to identify type

And see: And see:
~mikec/cs12/demo01/*.c~mikec/cs12/demo01/*.c

