
1

C function memory notes
Parameters and local variables are automatic
– i.e., they exist only while the function executes

So should never return a pointer to an automatic variable
– Dynamic memory allocation is different (will discuss)

Variables always passed to functions “by value”
– i.e., the value is copied, so functions operate on a copy

One issue: is inefficient to pass structures – pointers better
Another issue: functions need pointers to change values
change(x); /* x’s value unchanged when function returns*/
change(&x); /* function may have changed x’s value */

Return values are copies too – so similar issues

A parameter passing example
void triple1(int x) { x = x * 3; }
void triple2(int *x) { *x = *x * 3; }
int a[] = {10, 7};
void main(void) {

triple1(a[0]); /* What is being passed? */
printf("%d\n", a[0]); /* What is printed? */
triple2(a); /* What is being passed? */
printf("%d\n", a[0]); /* What is printed? */

Be sure to understand why these results occur.
– Hint: draw the memory storage – including storage duration

Analogous example, re pointers

First, recall that pointers are variables too … then
void repoint1(int *p) { p = p + 1; }
void repoint2(int **p) { *p = *p + 1; }
int a[] = {10, 7};
int *ap = a;
void main(void) {

repoint1(ap); /* What is being passed? */
printf("%d\n", *ap); /* What is printed? */
repoint2(&ap); /* What is being passed? */
printf("%d\n", *ap); /* What is printed? */

2 ways to allocate memory
Static memory allocation – done at compile-time
– int x; double a[5]; /* space for 1 int, 5 doubles */

– Both size and type are clearly specified ahead of time
– x can only hold int values, a only doubles

Dynamic memory allocation – during execution
– Must use library methods like malloc
int *ip = malloc(sizeof(int));

Actually returns void * or NULL if memory not available

– Must free the memory when done with it: free(ip);

Returning pointers from functions
Okay if points to dynamically allocated (or external) storage:
int *goodPtr(void) {

int *p = (int *)malloc(sizeof(int));
*p = 4;
return p; }

Big mistake if points to local storage (inc. parameter values):
int *danglingPtr(void) {

int x = 8;
int *p = &x;

return p; }
– p is a dangling pointer – as memory for x is erased and/or reused

Self-Quiz – Pointers & memory
Sayint *a, *b;

a = (int *)malloc(sizeof(int));
b = (int *)malloc(sizeof(int));
*a = 5; *b = 17;

– What does this mean?
– What are (all) the results of: a = b; in this case?
– What code would swap the values stored at a and b?
– What would happen if we tried this: b = 17; ?

Pointer fun

2

int scanf(char *fmt, a1, a2, …)

Like printf, but inputs from stdin
For all except %c – skips white space
Arguments corresponding to conversion
characters must be pointers:

int x;
char word[20];
scanf(“%d %s”, &x, word);

– Note – word is already a pointer, so no &
– Another note – word array must be large enough

Also sscanf, and sprintf – corresponding
functions to get from, or put to a string instead

File input/output

FILE *fp; /* declare a file pointer */
fp = fopen(“filename”, mode);

/* associate a file with the pointer */
– mode is char * – either “r”, “w”, or “a”

Input or output using the file pointer:
– getc(fp); /* returns next int from file */
– putc(intValue, fp); /* outputs value to file */
– fscanf(fp, format, …); /* input from file */
– fprintf(fp, format, …); /* output to file */

Error handling basics

Do NOT print errors to stdout
– Print error messages to stderr instead:

fprintf(stderr, “message”, args…);

Often need to terminate execution due to errors
– In main – return EXIT_FAILURE; /* or any non-zero */

– In other functions – exit(EXIT_FAILURE);

Sometimes want to check error status of file (fp)
– General error – ferror(fp); /* returns 0 if no errors */

– End-of-file – feof(fp); /* returns non-0 if end of file */

Line input and output

Note: K&R getline is non-standard – better to
use fgets from <stdio.h>:
char *fgets(char *line, int max, FILE *fp);

– Reads at most max – 1 characters, including ‘\n’
– The array, line, must be able to hold max chars
fputs – alternative to fprintf to output lines:
int fputs(char *line, FILE *fp); /* returns EOF if error */

Or just use puts(…) for stdout
But do not use gets(…) – it’s dangerous

More library functions
Become familiar with K&R appendix B!
<string.h> – to deal with char * data
<ctype.h> – to handle individual chars
<math.h> – trig functions, logs, many more
– Note: usually must link to libm.a – use -lm
<stdlib.h> – various utilities
– Inc. atoi, qsort, rand, malloc, exit, system, …
<assert.h> – one cool macro: assert(int)
<time.h>, <limits.h>, … – check them out!

Linked data structures
Made up of nodes and links between nodes
– As purpose is data storage/retrieval, also contains

information field(s) inside nodes
Simplest is a linear linked list with single links:
– Define node structure to hold info and a link:
typedef char AirportCode[4]; /* e.g., “LAX” */
typedef struct NodeTag {

AirportCode airport;
struct NodeTag *link;

} NodeType, *NodePointer;

– By convention, link == NULL if last node in list

3

So what is a linked list, really?
Answer: a sequence of zero or more nodes, with
each node pointing to the next one
Need: a pointer to the first node
– Often referred to as “the list”
– Might be NULL – means it is an empty list

So: #define EMPTY(list) (list)==NULL

DUS ORD SAN

L

