
1

Monday:
1st Midterm Exam

REMINDER FROM LAST WEEK:

The linked list data types in Standish chapter 2:

typedef char AirportCode[4];

typedef struct NodeTag {
AirportCode airport;
struct NodeTag *link;

} NodeType, *NodePointer;

Inserting a new second node
e.g., have (DUS→ORD→SAN),

want (DUS→BRU→ORD→SAN)
or have (DUS), want (DUS→BRU)
or have (), want (BRU)

– Any other special cases?
A strategy:

create new node to hold BRU – call it n;
if empty list – point “list” at n; return;
else set n.link to “list”.link;

set “list”.link to &n; return;

Code to insert new 2nd node
Assume external variable for list:
NodePointer list;

And assume list already initialized and has at
least one node (i.e., no special case of empty list), then:
void insertNewSecondNode(void) {

NodePointer n;
n = (NodePointer)malloc(sizeof(NodeType));
strcpy(n->airport, “BRU”);
n->link = list->link;
list->link = n;

}

Searching a list for some info
Idea is to return a pointer to the node that
contains the info we are searching for, or return
NULL if the info is not in the list
Strategy:

declare local node pointer - call it n;
point n at first node in list;
while (n points to non-null node) {

if (n’s referent has the info)
return n;

else advance n to n->link;
}
return NULL if get this far;

List traversal & other notes
Search strategy typifies list traversal:

start by pointing to first node;
process that node;
change pointer to that node’s link;
keep going until success (e.g., found info), or

until end (i.e., pointing at NULL);

– Same idea works for lots of list operations
e.g., print list – immediately applicable
To append, first must get to last node
To remove a node, must get to it first

But also usually consider potential special cases
– e.g., first node, last node, empty list, just one node, …

2

Strategy to delete last node
declare 2 local node pointers: current, previous;

/* then handle special cases first */
just return (i.e., do nothing) if list is empty;
free(list) and return if just one node in list;

/* otherwise traverse list to find second-to-last node */
point previous at first node;
point current at previous->link;
while (current->link does not point to null)

advance both pointers;
/* finally, set link of second-to-last, and destroy last */

set previous->link = NULL;
free (current); /* Done. */

Code to delete last node (pt. 1)
void deleteLastNode(NodePointer *l) {

/* note: pointer to pointer – allows changing original pointer */
NodePointer previous, current;
if (*l != NULL) { /* case of empty list – do nothing */

if ((*l)->link == NULL) { /* list with 1 node */
free(*l);
*l = NULL;

} else { /* general case (i.e., all other cases) */
previous = *l;
current = (*l)->link;

/* continued next slide */

Code to delete last node (pt. 2)
while (current->link != NULL) {

/* i.e., not at last node yet */
previous = current;
current = current->link;

}

/* now previous points to next-to-last, so make it last */
previous->link = NULL;

/* current points to old last, so recycle the storage */
free(current);

} /* end general case */
} /* end case of non-empty list */

} /* end function */

btw: other linked structures
More elaborate linked lists are often useful
– e.g., nodes with 2 links: previous and next

Easy reverse traversal, insertion before a node, …
But 2 links to worry about for insert, remove, …

– e.g., circular lists – last points to first (and first points
to last for 2-way circular list)

– Choice depends on problem and efficiency (more to
come in later chapters; maybe upcoming project too)

Trees – see figure 2.23 (p. 56) – more later
Graphs – chapter 10 – not part of CS 12 though

