
1

What is abstraction?
Workable answer – a blurring of details
Idea: agree to ignore certain details (for now)
– e.g., with procedural abstraction – idea is to convert

original problem to a series of simpler problems
Works for data types too
– Think (and write code) in terms of abstract data types

like Lists, Stacks, Trees, …
What should matter – what you can do with a List
What should not matter – what goes on inside the List

– Assume the ADT works – just use it!

A Priority Queue ADT
ADT is defined by its interface – what it does
If PQItem and PriorityQueue are defined types

void insert(PQItem, PriorityQueue *);

/ * add the item to the queue */
PQItem remove(PriorityQueue *);

/ * always returns item with highest priority */
int empty(PriorityQueue *);

/* true if queue has no items */
void initialize(PriorityQueue *);

/* or similar constructor function */

Never mind how it works – think about that later

Interface is enough to use ADT
Easy way to sort – let a priority queue do it
void easySort(PQItem a[], int n) {

int i; PriorityQueue pq;
initialize(&pq);
for (i=0; i<n; i++) /* put all items in priority queue*/

insert(a[i], &pq);
for (i=n-1; i>=0; i--) /* items come out sorted */

a[i] = remove(&pq);
} /* There are more efficient ways to sort, but that’s not the point. */

The point is that we can use it without knowing
how it works.
Abstraction is good!

Of course, it does have to work

Many ways to implement – text covers 2:
– Maintain a sorted list of items:

insert – some work: insure item is inserted in order
remove – easy: remove the first item

– Keep items in an unsorted array:
insert – easy: append item as last array element
remove – harder: search for highest priority item,
and move last array element to emptied slot

Binary tree method works best – later topic

Decomposition and C modules
So user just needs the interface:
– e.g., #include “PriorityQueue.h”

Which may vary between implementations – but better not to
The implementation is in a separate file:
– Usually PriorityQueue.c, and separately compiled

This file also has #include PriorityQueue.h in it

This organization has at least two major benefits:
– Implementation details hidden from user

User less likely to mess it up, & doesn’t have to think about it
– Critical interface declarations stored in a single place

Scoping rules
Refer to the “visibility” of identifiers
long x; float y; int z; /* “global” variables*/
void fn(char c, int x) { /* parameter x hides global x */

double y = 3.14159; /* local y hides global y */
extern int z; /* refer to global z */
{ char y; /* hides first local y */

y = c; /* assign to second local y */
}
y = y / 3.0; /* assign to first local y */
z++; /* increment global z */

}

Translation unit – a file, and #included files
– Extent of “global” scopes, unless extern is used

2

Compiling, linking, & make files

Compiling only – e.g., gcc -c pgm.c
– Creates object file called pgm.o (or pgm.obj in DOS)

Linking only – e.g., gcc pgm.o –o pgm
– Makes executable file called pgm (or pgm.exe in DOS)

Can automate process with a Makefile:
pgm: pgm.o # dependency

gcc pgm.o –o pgm # action (tab is required)
pgm.o: pgm.c

gcc -c pgm.c

– Then just type “make” – Unix tool executes the
actions as necessary to satisfy the dependencies

Dealing with multiple modules
Imagine a program for factorial, consisting (for
illustrative purposes only) of 3 modules:
factorial.h – contains the function prototype
factorial.c – implements the function
testfac.c – uses the function
– Both .c files #include “factorial.h”

Makefile – separately compiles testfac and
factorial, then links them
– If just change factorial.c – make recompiles that

file only and relinks to existing testfac.o

Abstract lists
Text’s ch. 4 lists more abstract than ch. 2
– Info stored as ItemType

Then typedef int ItemType, or any other type
– #include ItemInterface.h – redefined as necessary

– List node operations are very general:
void setLink(NodePointer, NodePointer)
NodePointer getLink(NodePointer)
void setItem(NodePointer, ListItem)

/* where typedef ItemType ListItem */
ListItem getItem(NodePointer)

Idea is to hide the implementation details

Even more abstract lists

One way: store info as void *
– Then can point to anything
– Only way to apply polymorphic abstraction in C

Another way: hide internal data structures
completely – give no access to nodes
– Not just function implementations can be hidden
– Necessary to provide an iterator mechanism, because

user has no direct access to links
Simplifies list usage, and prevents tampering

Basic List ADT
basiclist.h – (very) abstract data type for lists
– Allows handling of any type of data:

typedef void *InfoPointer;

– Completely hides implementation details:
typedef struct ListTag *ListPointer;

Structure declared here; defined in basiclist.c
Might be implemented as array or other way – user doesn’t
have to know; user can’t mess it up

– Requires initialization to set things up:
ListPointer createList(void);

In this case, have to allocate space for list structure, and
initialize all pointers to NULL

Basic list ADT (cont.)
Accessor functions access info, not nodes

InfoPointer firstInfo(ListPointer);
InfoPointer lastInfo(ListPointer);
InfoPointer currentInfo(ListPointer);

– User cannot incorrectly handle nodes
e.g., can never set node->link = node;

Insert functions do not copy info, just pointers
void insertFirst(InfoPointer, ListPointer);

Can also insert last, or before or after current

Delete functions return copies of deleted pointers
InfoPointer deleteFirst(ListPointer);

Can also delete last or current

