
What is abstraction?What is abstraction?
Workable answer – a blurring of details
Idea: agree to ignore certain details (for now)
– e.g., with procedural abstraction – idea is to convert

original problem to a series of simpler problems
Works for data types too
– Think (and write code) in terms of abstract data types

like Lists, Stacks, Trees, …
What should matter – what you can do with a List
What should not matter – what goes on inside the List

– Assume the ADT works – just use it!

A Priority Queue ADTA Priority Queue ADT
ADT is defined by its interface – what it does
If PQItem and PriorityQueue are defined types

void insert(PQItem, PriorityQueue *);

/ * add the item to the queue */
PQItem remove(PriorityQueue *);

/ * always returns item with highest priority */
int empty(PriorityQueue *);

/* true if queue has no items */
void initialize(PriorityQueue *);

/* or similar constructor function */

Never mind how it works – think about that later

Interface is enough to use ADTInterface is enough to use ADT
Easy way to sort – let a priority queue do it
void easySort(PQItem a[], int n) {

int i; PriorityQueue pq;
initialize(&pq);
for (i=0; i<n; i++) /* put all items in priority queue*/

insert(a[i], &pq);
for (i=n-1; i>=0; i--) /* items come out sorted */

a[i] = remove(&pq);
} /* There are more efficient ways to sort, but that’s not the point. */

The point is that we can use it without knowing
how it works.
Abstraction is good!

Of course, it Of course, it doesdoes have to workhave to work

Many ways to implement – text covers 2:
– Maintain a sorted list of items:

insert – some work: insure item is inserted in order
remove – easy: remove the first item

– Keep items in an unsorted array:
insert – easy: append item as last array element
remove – harder: search for highest priority item,
and move last array element to emptied slot

Binary tree method works best – later topic

Decomposition and C modulesDecomposition and C modules
So user just needs the interface:
– e.g., #include “PriorityQueue.h”

Which may vary between implementations – but better not to
The implementation is in a separate file:
– Usually PriorityQueue.c, and separately compiled

This file also has #include PriorityQueue.h in it

This organization has at least two major benefits:
– Implementation details hidden from user

User less likely to mess it up, & doesn’t have to think about it
– Critical interface declarations stored in a single place

Scoping rulesScoping rules
Refer to the “visibility” of identifiers
long x; float y; int z; /* “global” variables*/
void fn(char c, int x) { /* parameter x hides global x */

double y = 3.14159; /* local y hides global y */
extern int z; /* refer to global z */
{ char y; /* hides first local y */

y = c; /* assign to second local y */
}
y = y / 3.0; /* assign to first local y */
z++; /* increment global z */

}

Translation unit – a file, and #included files
– Extent of “global” scopes, unless extern is used

Compiling, linking, &Compiling, linking, & makemake filesfiles

Compiling only – e.g., gcc -c pgm.c
– Creates object file called pgm.o (or pgm.obj in DOS)

Linking only – e.g., gcc pgm.o –o pgm
– Makes executable file called pgm (or pgm.exe in DOS)

Can automate process with a Makefile:
pgm: pgm.o # dependency

gcc pgm.o –o pgm # action (tab is required)
pgm.o: pgm.c

gcc -c pgm.c

– Then just type “make” – Unix tool executes the
actions as necessary to satisfy the dependencies

Dealing with multiple modulesDealing with multiple modules
Imagine a program for factorial, consisting (for
illustrative purposes only) of 3 modules:
factorial.h – contains the function prototype
factorial.c – implements the function
testfac.c – uses the function
– Both .c files #include “factorial.h”

Makefile – separately compiles testfac and
factorial, then links them
– If just change factorial.c – make recompiles that

file only and relinks to existing testfac.o

Abstract listsAbstract lists
Text’s ch. 4 lists more abstract than ch. 2
– Info stored as ItemType

Then typedef int ItemType, or any other type
– #include ItemInterface.h – redefined as necessary

– List node operations are very general:
void setLink(NodePointer, NodePointer)
NodePointer getLink(NodePointer)
void setItem(NodePointer, ListItem)

/* where typedef ItemType ListItem */
ListItem getItem(NodePointer)

Idea is to hide the implementation details

Even more abstract listsEven more abstract lists

One way: store info as void *
– Then can point to anything
– Only way to apply polymorphic abstraction in C

Another way: hide internal data structures
completely – give no access to nodes
– Not just function implementations can be hidden
– Necessary to provide an iterator mechanism, because

user has no direct access to links
Simplifies list usage, and prevents tampering

Basic List ADTBasic List ADT
basiclist.h – (very) abstract data type for lists
– Allows handling of any type of data:

typedef void *InfoPointer;

– Completely hides implementation details:
typedef struct ListTag *ListPointer;

Structure declared here; defined in basiclist.c
Might be implemented as array or other way – user doesn’t
have to know; user can’t mess it up

– Requires initialization to set things up:
ListPointer createList(void);

In this case, have to allocate space for list structure, and
initialize all pointers to NULL

Basic list ADT (cont.)Basic list ADT (cont.)
Accessor functions access info, not nodes

InfoPointer firstInfo(ListPointer);
InfoPointer lastInfo(ListPointer);
InfoPointer currentInfo(ListPointer);

– User cannot incorrectly handle nodes
e.g., can never set node->link = node;

Insert functions do not copy info, just pointers
void insertFirst(InfoPointer, ListPointer);

Can also insert last, or before or after current
Delete functions return copies of deleted pointers

InfoPointer deleteFirst(ListPointer);

Can also delete last or current

