
1

Iterators – basic list example
current – refers to most recently accessed item
– To manipulate other parts of list (not just first, last)
– Points to NULL if list is empty
– Note: item just before a deleted item is the most

recently accessed (to set link to NULL)
User needs way to iterate through list items
void advanceCurrent(ListPointer);

And a way to reset current to first item again
void resetCurrent(ListPointer);

And best have way to ask if at end of list or not
int hasMoreInfo(ListPointer);

Basic list trade-offs
Abstraction sacrifices efficiency
– Function calls instead of direct node access

User has to deal with void * pointers
– Easy for insert operations – any pointer is “promoted”
– But must cast to true pointer type on return

printf("%s", (char *)firstInfo(list));

– And must dereference to get to real data
printf("%d", *(int *)currentInfo(list));

void * storage also inhibits some operations
– No way for list module to search, or sort, etc., without

knowing type – one complication can fix this though

What is a recursive function?
Ans: a function that calls itself (maybe indirectly)
Standard first example – factorial function:

n! = n * (n-1) * (n-2) * … * 1 (for n > 0)
– Note recursive pattern:

n! = n * (n-1)! (for n > 1, and 1! = 1)
– Translates immediately to C:

int factorial(int n) {
if (n<=1)

return 1;
else

return n*factorial(n-1);
}

Recursive solution essentials
Always need a base case
– a.k.a. trivial case, or smallest case
– A way to stop; otherwise infinite recursion

e.g., if (n<=1) in factorial method

Recursive calls converge on base case
– i.e., problems get smaller with each recursion

e.g., factorial(n-1)

Solution must actually solve the problem!
– This part is most important, and the hardest to insure

Recursive Drawing Example
Handy for some non-numerical problems too
Drawing tick marks on a ruler:
– base case: draw nothing (tick too small)
– general case: draw middle tick, then draw left and

right “sub-rulers” (with smaller ticks)
void ruler(int left, int right, int tickHeight) {

if (not done yet) { /* pseudocode */
int middle = (left + right) / 2;
draw_tick(middle, tickHeight);
ruler(left, middle, tickHeight / 2);
ruler(middle, right, tickHeight / 2);

}
}

Recursive list printing
Because a list is a recursive data structure
– Idea: print info, then call function for next node (as

long as there are nodes left to print)
Simple change prints in reverse!

void printReverse(NodePointer n) {
if (n->link != NULL)

printReverse(n->link);
printf("%s ", n->info);

}
Q: how to print opening/closing parentheses?
– One answer: use recursive auxiliary function

2

Towers of Hanoi (demo)

Some solutions are especially surprising
Move n disks from a to c; use b to hold
– Base case: just one disk – trivial

if (n==1) moveOneDisk(a→c);
– General case: assume there is a function that can move

a tower of height n-1. This function!!!
else {

tower(size n-1, a→b with c holding);
moveOneDisk(a→c);
tower(size n-1, b→c with a holding);

}

Iterative solution much more difficult in this case

Top-down programming
by stepwise refinement

Typical top-level algorithm has 3 main steps:
1. Get data
2. Process data
3. Show results
– Applies to whole program, and most functions

For functions, get-data step usually done by parameter list,
and show-results step usually done by return

Idea is to start with top-level, then refine steps
– e.g., steps 2.1, 2.2, … refined step 2

Later refinements – step 2.2.1, 2.2.2, …
And so on until algorithm is complete

Functions carry out the steps
Top down programming boils down to:
– Write the necessary sequence of steps as function calls
– Then write the functions

May involve writing deeper sequences of function calls
So write those additional functions

– And so on …

Concept is called algorithm abstraction
– Motivation is to manage complexity

Don’t have to consider all the details all at once
Solve overall problem – then sub-problems as encountered

– Even more powerful combined with data abstraction

Choosing data structures:
key part of devising a solution
e.g., text section 5.2, lottery ticket example
– Top-level: (1) get 6 amounts, (2) process, (3) print amount won.

One solution – use a Table to track repetitions –
– Refine step 2 – make Table with 1 row for each different amount,

and 2 columns with the amount and repetitions
Further: use array of struct{amount, reps} to represent Table

– Refine step 3 – print 0 or highest amount that has 3+ reps
Another solution – sort array of amounts –
– Refine step 2 – sort the 6 amounts into descending order
– Refine step 3 – print first amount that is repeated 3 times

Testing
Goal is to find faults
Faults (a.k.a. bugs) cause systems to fail
– e.g., a system crashes – the most obvious type of fault
– e.g., a security system that allows unauthorized entry
– e.g., a shot-down video game plane continues on path

Can verify the presence of bugs, not their absence
– Testing fails if no bugs are found! (a good thing really)

Testing and debugging are separate processes
– Testing identifies; debugging corrects/removes faults

Testing steps

Unit tests – insure each part is correct
– Independently test each function in each file

Integration tests – insure parts work together
– Test functions working together; not whole system yet

System tests – insure system does what it is
supposed to do
More testing to do – especially for large systems
– Includes functional tests, performance tests,

acceptance tests, and installation tests

3

Testing approaches
Black box testing – best by independent tester
– Plan good test cases, and conduct automated tests

Open box testing – a separate, preliminary activity
– “Coverage testing” is the goal

i.e., test every line of code at least once
– Includes unit testing and integration testing

Regression testing – repeat tests frequently
– Because fixing a new bug may re-introduce old ones
– Easy to do with automated testing framework

i.e., special purpose programs and data files like assignment 3

Test plans
Test a representative sample of normal cases
– Usually no way to test all possibilities

But don’t really need to – random sample of cases okay
– At least be sure to test all normal operations

e.g., insert first, delete last, show current …

Test boundary cases
– Test the extremes – includes empty cases, lone cases,

last case, first case, …, any other “edge” cases
e.g., delete from lists with 0, 1, and 2 items

Test error cases too
– e.g., test how bad input is handled – should not crash!

Assertions
Are conditions that should all be true for the
program to be considered correct
– Can be used for testing correctness with logical rules
– Can also be tested automatically in many cases

Most important types of assertions:
– Function “contract” clauses

Pre-conditions – must be true on function entry
Post-conditions – must be true on function exit, if the pre-
conditions were true beforehand
Both sets of conditions should be made clear to users
(usually as comments in header files)

– Loop invariants – must be true on each iteration

Executable assertions
Can verify correctness automatically
– e.g., pre-condition of inverse(x) is that x is not zero

Let assertion check automatically
– Must #include assert.h:

double inverse(int x) {
assert(x != 0); /* halts with message if x == 0 */
return 1. / x; /* better than crashing here */

}

If pre-condition fails, it’s the user’s fault
– Function doesn’t know what to do, so no use for if …

i.e., if (x == 0) what now? – no good answer, really

More assertions
Can also use assert to check post-conditions
– Should verify key effects if a function is complex

In this case, errors are the fault of the implementation!
Asserting loop invariants is useful for debugging
Q. Why assert to check your own code?
– Answer: catch bugs early and effectively

Bugs appear as soon as testing begins
Also know where bug occurred, and maybe where to fix it

Note: use assert as a development tool ONLY
– Easy to turn off all assertions for final product

#define NDEBUG before #include <assert.h>

