
1

Monday:
2nd Midterm Exam

Algorithm analysis
Need a way to measure efficiency
– Regardless of processor speed or compiler

implementation
Both of which can greatly affect processing time

– And independent of the programming language used
Really just need a way to compare algorithms
– i.e., holding constant things that don’t matter
– Question becomes – which algorithm is more efficient

on any computer in any language?
Solution – ‘O’ notation
– Simplest type is worst case analysis – called Big-Oh

Little-oh, Big Ω (omega), and Big Θ (theta) – not in CS 12

Big-Oh notation
Strips problem of inconsequential details
– All but the “dominant” term are ignored

e.g., say algorithm takes 3n2 + 15n + 100 steps, for a
problem of size n
Note: as n gets large, first term (3n2) dominates, so okay to
ignore the other terms

– Constants associated with processor speed and
language features are ignored too

In above example, ignore the 3

So this example algorithm is O(n2)
– Pronounced “Oh of n-squared”

Belongs to the “quadratic complexity” class of algorithms

Formally, f(n) is O(g(n)) if
∃ two positive constants(K, n0), such that
|f(n)| ≤ K|g(n)|, ∀(n ≥ n0)

0e+0

5e+5

1e+6

2e+6

2e+6

3e+6

3e+6

4e+6

4e+6

5e+6

0 150 300 450 600 750 900 1050 1200 1350 1500

f(n)

K x g(n)

n0

Some complexity classes

Linear - O(n); Quadratic - O(n2); Cubic - O(n3)
– Also slower than cubic – e.g., Exponential - O(2n)
– And faster than linear – O(log n), and Constant - O(1)

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Input Size (n)

Quadratic

O(n log n)
Linear

Cubic

Applies to large problems only

Big-Oh measures asymptotic complexity
– Mostly irrelevant for small problems
– But some algorithms become impractical as n grows

Say linear time is 256 microseconds (µsecs):
– O(log2 n) time is 8 µsecs
– O(n log2 n) time is 2.05 milliseconds (ms)
– Quadratic time is 65.5 ms
– Cubic time is 16.8 seconds
– Exponential time (base 2) is 3.7x1063 years!!!

2

Efficiency of list functions
If singly-linked list (like assignment 2):
– Insert/delete first – O(1)
– Insert/delete last/random – O(n)

If pointer to last item – insert last is O(1)
– Find value – O(n)
– Retrieve/set ith item – O(n)

Compare to array:
– Insert/delete first/random, and find value – O(n)
– Insert/delete last – O(1) – unless resize, then O(n)
– Retrieve/set ith item – O(1) – the array’s strong point

What Big-Oh doesn’t cover
Small problems
– Often dominated by lesser terms or constants

What to count?
– Comparisons? Assignments? Reads? Writes?
– Some operations take longer than others

Depends in part on the system, compiler, and so on

Notice the definition is not restrictive
– e.g., an algorithm that is O(n) is also O(n2), etc.
– So agree to express bound as tightly as possible, and

to not include lesser terms in g(n)

Stacks
LIFO data structure
– Last In, First Out

All items except last
item pushed are
inaccessible
So has very few
possible operations:
– push, pop, peek,
empty, full, size,
clear

Lots of applications
First item pushed
Last item popped

Last item pushed
First item popped

Top (next item)

Applying stacks
Can be used to eliminate recursion
– Iteration and stacks instead of recursive calls

For each “recursive” step
– Push struct full of critical data values

While stack is not empty
– Pop struct – like “return” from recursive call

– It’s how the compiler does it
Pushes “activation record” (a.k.a., “stack frame”) for every
function call, not just recursive ones (see text section 7.7)

In fact, idea applies to any nested structure
– Recursion is just a nesting of function calls
– What about nested parentheses in expressions?

Checking balanced (), [], { }
Okay to nest, like {x/[y*(a+b)]}
Not okay to mismatch (or nest improperly)
– (a/(x + y) is missing a right parenthesis
– (x + [y-2)] is mismatched at [)

Parentheses fully match if the following works:
for (each character in the expression) {

if a left parenthesis - push it on the stack;
if a right parenthesis

pop matching left parenthesis from stack
} stack is empty at the end

See program 7.5 in text

Implementing stacks
Easy with a list (too easy for programming project):
– Say ListPointer list = createList();

– Then to push: insertFirst(item, list);
– To pop: return deleteFirst(list);
– To peek: return firstInfo(list);
– To clear: clearList(list);
– emptyStack: return emptyList(list);
– fullStack: return 0; /* does not fill up */

Easy with an array too
– And it’s more efficient – less function overhead

