Monday:
 2nd Midterm Exam

Algorithm analysis

- Need a way to measure efficiency
- Regardless of processor speed or compiler implementation
- Both of which can greatly affect processing time
- And independent of the programming language used
- Really just need a way to compare algorithms
- i.e., holding constant things that don't matter
- Question becomes - which algorithm is more efficient on any computer in any language?
- Solution - 'O' notation
- Simplest type is worst case analysis - called Big-Oh
- Little-oh, Big Ω (omega), and Big Θ (theta) - not in CS 12

Big-Oh notation

- Strips problem of inconsequential details
- All but the "dominant" term are ignored
- e.g., say algorithm takes $3 n^{2}+15 n+100$ steps, for a problem of size n
- Note: as n gets large, first term ($3 n^{2}$) dominates, so okay to ignore the other terms
- Constants associated with processor speed and language features are ignored too
- In above example, ignore the 3
- So this example algorithm is $0\left(\mathrm{n}^{2}\right)$
- Pronounced "Oh of n-squared"
- Belongs to the "quadratic complexity" class of algorithms

Formally, $f(n)$ is $0(g(n))$ if

 \exists two positive constants $\left(K, n_{0}\right)$, such that $|f(n)| \leq K|g(n)|, \quad \forall\left(n \geq n_{0}\right)$

Some complexity classes

- Linear - 0(n); Quadratic - 0 (n^{2}); Cubic - $0\left(n^{3}\right)$
- Also slower than cubic - e.g., Exponential - 0(2n)
- And faster than linear $-0(\log n)$, and Constant $-0(1)$

Applies to large problems only

- Big-Oh measures asymptotic complexity
- Mostly irrelevant for small problems
- But some algorithms become impractical as n grows
- Say linear time is 256 microseconds (μ secs):
- $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$ time is $8 \mu \mathrm{secs}$
- $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right.$) time is 2.05 milliseconds (ms)
- Quadratic time is 65.5 ms
- Cubic time is 16.8 seconds
- Exponential time (base 2) is 3.7×10^{63} years!!!

Efficiency of list functions

- If singly-linked list (like assignment 2):
- Insert/delete first - O(1)
- Insert/delete last/random - O(n)
- If pointer to last item - insert last is $\mathrm{O}(1)$
- Find value - O(n)
- Retrieve/set $\mathrm{i}^{\text {th }}$ item - O(n)
- Compare to array:
- Insert/delete first/random, and find value - O(n)
- Insert/delete last - O(1) - unless resize, then O(n)
- Retrieve/set $\mathrm{i}^{\text {th }}$ item $-\mathrm{O}(1)$ - the array's strong point

What Big-Oh doesn't cover

- Small problems
- Often dominated by lesser terms or constants
- What to count?
- Comparisons? Assignments? Reads? Writes?
- Some operations take longer than others
- Depends in part on the system, compiler, and so on
- Notice the definition is not restrictive
- e.g., an algorithm that is $\mathrm{O}(\mathrm{n})$ is also $\mathrm{O}\left(\mathrm{n}^{2}\right)$, etc.
- So agree to express bound as tightly as possible, and to not include lesser terms in g(n)

Stacks

Top (next item)
First item popped
First item pushed
Last item popped

- LIFO data structure
- Last In, First Out
- All items except last item pushed are inaccessible
- So has very few possible operations:
- push, pop, peek, empty, full, size, clear
- Lots of applications

Applying stacks

- Can be used to eliminate recursion
- Iteration and stacks instead of recursive calls
- For each "recursive" step
- Push struct full of critical data values
- While stack is not empty
- Pop struct - like "return" from recursive call
- It's how the compiler does it
- Pushes "activation record" (a.k.a., "stack frame") for every function call, not just recursive ones (see text section 7.7)
- In fact, idea applies to any nested structure
- Recursion is just a nesting of function calls
- What about nested parentheses in expressions?

Checking balanced (), [], \{ \}

- Okay to nest, like $\left\{x /\left[y^{*}(a+b)\right]\right\}$
- Not okay to mismatch (or nest improperly)
- $(a /(x+y)$ is missing a right parenthesis
- ($x+[y-2)]$ is mismatched at [)
- Parentheses fully match if the following works:
for (each character in the expression) \{ if a left parenthesis - push it on the stack; if a right parenthesis pop matching left parenthesis from stack
\} stack is empty at the end
- See program 7.5 in text

Implementing stacks

- Easy with a list (too easy for programming project):
- Say ListPointer list = createList();
- Then to push: insertFirst(item, list);
- To pop: return deleteFirst(list);
- To peek: return firstInfo(list);
- To clear: clearList(list);
- emptyStack: return emptyList(list);
- fullStack: return 0; /* does not fill up */
- Easy with an array too
- And it's more efficient - less function overhead

