Monday:
2nd Midterm Exam

Algorithm analysis

e Need a way to measure efficiency

— Regardless of processor speed or compiler
Implementation
e Both of which can greatly affect processing time

— And independent of the programming language used

e Really just need a way to compare algorithms
— 1.e., holding constant things that don’t matter

— Question becomes — which algorithm is more efficient
on any computer in any language?

e Solution — ‘O’ notation

— Simplest type is worst case analysis — called Big-Oh
e Little-oh, Big Q2 (omega), and Big ©® (theta) — not in CS 12

Big-Oh notation

e Strips problem of inconsequential details

— All but the “dominant” term are ignored

e €.0., say algorithm takes 3n* + 15n + 100 steps, for a
problem of size n

o Note: as n gets large, first term (3n2) dominates, so okay to
Ignore the other terms

— Constants associated with processor speed and
language features are ignored too
e In above example, ignore the 3

e So this example algorithm is 0(n2)

— Pronounced “Oh of n-squared”
e Belongs to the “quadratic complexity” class of algorithms

Formally, £(n) Is O(g(n)) If
3 two positive constants(K, ng), such that

[T(n) | < Kljg(n)], V(n =2 ny)

5e+6
4e+6
4e+6
3e+6 -
3e+6
2e+6 -
2e+6 -
le+6 -
5e+5
Oe+0

0 150 300 450 600 /750 900 1050 1200 1350 1500

Some complexity classes

z

Quadratic

0

9 |
8 |
7
6 |
5
4
3
2
1
0 ¥

0 1IO 2IO 3IO 4IO 5IO 6IO
Input Size (n)
e Linear - 0(n); Quadratic - 0(n2); Cubic - 0(n3)
— Also slower than cubic — e.g., Exponential - 0(2")
— And faster than linear — 0(1og n), and Constant - 0(1)

Applies to large problems only

e Big-Oh measures asymptotic complexity
— Mostly irrelevant for small problems
— But some algorithms become impractical as n grows

e Say linear time Is 256 microseconds (usecs):
— O(log, n) time Is 8 psecs
— O(n log, n) time is 2.05 milliseconds (ms)
— Quadratic time Is 65.5 ms
— Cubic time Is 16.8 seconds
— Exponential time (base 2) is 3.7x10°3 years!!!

Efficiency of list functions

e If singly-linked list (like assignment 2):
— Insert/delete first — O(1)

— Insert/delete last/random — O(n)
o If pointer to last item — insert last is O(1)

— Find value — O(n)
— Retrieve/set it item — O(n)
e Compare to array:
— Insert/delete first/random, and find value — O(n)
— Insert/delete last — O(1) — unless resize, then O(n)
— Retrieve/set i item — O(1) — the array’s strong point

What Big-Oh doesn’t cover

e Small problems

— Often dominated by lesser terms or constants
e \What to count?

— Comparisons? Assignments? Reads? Writes?

— Some operations take longer than others
e Depends in part on the system, compiler, and so on

e Notice the definition Is not restrictive
— e.g., an algorithm that is O(n) is also O(n?), etc.

— SO0 agree to express bound as tightly as possible, and
to not include lesser terms in g(n)

Stacks

Last item pushed
First item popped

First item pushec
Last item popped

e LIFO data structure
— Last In, First Out

e All items except last
item pushed are
Inaccessible

e S0 has very few
possible operations:

— push, pop, peek,
empty, full, size,
of oT-1g

e Lots of applications

Applying stacks

e Can be used to eliminate recursion

— Iteration and stacks instead of recursive calls

e For each “recursive” step
— Push struct full of critical data values

e While stack is not empty

— Pop struct - like “return” from recursive call

— It’s how the compiler does it

e Pushes “activation record” (a.k.a., “stack frame”) for every
function call, not just recursive ones (see text section 7.7)

e In fact, idea applies to any nested structure
— Recursion is just a nesting of function calls
— What about nested parentheses in expressions?

Checking balanced (), [], {}

e Okay to nest, like {x/[y*(a+b)]}
e Not okay to mismatch (or nest improperly)
— (a/(x + y) Is missing a right parenthesis

— (x + [y-2)]1s mismatched at [)
e Parentheses fully match if the following works:

for (each character 1In the expression) {
iIT a left parenthesis - push i1t on the stack;
iIf a right parenthesis
pop matching left parenthesis from stack
} stack 1s empty at the end

e See program 7.5 In text

Implementing stacks

e Easy with a list (too easy for programming project):
— Say ListPointer list = createlList();
— Then to push: insertFirst(item, list);
— To pop: return deleteFirst(list);
— To peek: return firstinfo(list);
— To clear: clearList(list);
— emptyStack: return emptyList(list);
— fullStack: return 0; /* does not fill up */
e Easy with an array too
— And it’s more efficient — less function overhead

