Postfix (and prefix) notation

- Also called "reverse Polish" - reversed form of notation devised by mathematician named Jan Łukasiewicz (so really lü-kä-sha-vech notation)
- Infix notation is: operand operator operand - Like 4 + 22
- Requires parentheses sometimes: 5 * $(2+19)$
- Postfix form is: operand operand operator - So 422 +
- No parentheses required: 5219 + *
- Prefix is operator operand operand: + 422

Evaluating postfix expressions

- Algorithm (start with an empty stack):
while expression has tokens \{
if next token is operand /* e.g., number */ push it on the stack;
else /* next token should be an operator */ pop two operands from stack; perform operation; push result of operation on stack;
\}
pop the result; /* should be only thing left on stack */

Postfix evaluation example

- Expression: $54+8$ *
- Step 1: push 5
- Step 2: push 4
- Step 3: pop 4, pop 5, add, push 9
- Step 4: push 8
- Step 5: pop 8, pop 9, multiply, push 72
- Step 6: pop 72 - the result
- A bad postfix expression is indicated by:
- Less than two operands to pop when operator occurs
- More than one value on stack at end

Evaluating infix expressions

- Simplest type: fully parenthesized
- e.g., ((($6+9$) / 3) * ($6-4$))
- Still need 2 stacks: 1 numbers, 1 operators while tokens available \{
if (number) push on number stack;
if (operator) push on operator stack;
if (‘(‘) do nothing;
else \{ /* must be ')' */
pop two numbers, and one operator;
calculate; push result on number stack;
\}
\} /* should be one number left on stack at end: the result */

Converting infix to postfix

- Operator precedence matters
- e.g., $3+(10-2) * 5 \rightarrow 3102-5$ * +
- Algorithm uses one stack; prints results (alternatively, could append results to a string)
- For each token in the expression:
if (number) print it;
if ('(') push on stack;
if (')')
pop and print all operators until '('; discard '(‘;
if (operator) /* more complicated - next slide */

Infix to postfix (cont.)

/* call current token the "new operator" */ while (stack is not empty)
\{ peek at top operator on stack; if (top operator precedence >= new operator precedence) pop and print top operator; else break out of while loop; \} push new operator on stack after loop ends;

- At end, pop and print all remaining operators
- This algorithm does not account for all bad expressions -
e.g., does not check for too many operators left at end
- But can verify that parentheses are balanced

Queues

- FIFO data structure - First In, First Out
- Typical operations: enqueue (an item at rear of queue), dequeue (item at front of queue), peek (at front item), empty, full, size, clear
- i.e., very similar to a stack - limited access to items

Some queue applications

- Many operating system applications
- Time-sharing systems rely on process queues
- Often separate queues for high priority jobs that take little time, and low priority jobs that require more time (see last part of section 7.8 in text)
- Printer queues and spoolers
- Printer has its own queue with bounded capacity
- Spoolers queue up print jobs on disk, waiting for print queue
- Buffers - coordinate processes with varying speeds
- Simulation experiments
- Models of queues at traffic signals, in banks, etc., used to "see what happens" under various conditions

A palindrome checker

- Palindrome - same forward and backward - e.g., Abba, and "Able was I ere I saw Elba."
- Lots of ways to solve, including recursive
- Can use a queue and a stack together
- Fill a queue and a stack with copies of letters
- Then empty both together, verifying equality
- Reminder - we're using an abstraction
- We still don't know how queues are implemented!!! To use them, it does not matter!

Implementing queues

- Easy to do with a list:
- Mostly same as stack implementation
- Enqueue: insertLast(item, list);
- Then to dequeue and peek: refer to first item
- Array implementation is trickier:
- Must keep track of front and rear indices
- Increment front/rear using modulus arithmetic
- Indices cycle past last index to first again - idea is to reuse the beginning of the array after dequeues
- More efficient - but can become full
- Usually okay, but some queues should be unbounded

Linked lists revisited: variations

- Some are meant to speed up operations
- e.g., O(n) complexity to access last item
- Way to make it $\mathrm{O}(1)$: maintain pointer to last - easy and worth it!
- Another way: circular, double-linked list - not so easy
- Some are meant to increase usefulness
- e.g., circular list to solve Josephus problem
- e.g., generalized lists (lists of lists - upcoming topic)
- Trade-offs: use more space, harder to program

Implementing "better" lists

- Using double-linked lists - both harder and easier
- Must keep track of twice as many pointers
- Additional work required for most special cases
- But easy insert before, traverse backwards, access last
- Can use sentinel nodes that are hidden from user
- e.g., first and last sentinals - list is never really empty
- Eliminates lots of special cases - just have to "lie" to user
- e.g., $\mathrm{n}^{\text {th }}$ position sentinels - to speed access to $\mathrm{i}^{\text {th }}$ item
- Usually trading off: speed \leftrightarrow space \leftrightarrow effort

Generalized lists

- When list items may be sublists
- May also contain just single items - called "atoms"
- Usually implement with union in node structure
- e.g., instead of just info field, have info or sublist: union SubNodeTag\{

InfoPointer info;
NodePointer sublist;
\} SubNode;

- Also need field to identify a node as atom or sublist
- Lots of applications - see text section 8.4

Representing trees by links

- Much more flexible than array representation
- Because most trees are not as "regular" as heaps (later)
- Array representation usually wastes space, and does not accommodate changes well
- Binary tree node has two links, one for each child typedef struct treenode \{ DataType info; /* some defined data type */ struct treenode *left; /* one child*/ struct treenode *right; /* other child */
\} TreeNode, *TreeNodePointer; /* types */
- Not a binary tree? - keep list of children instead

Is <string.h> an ADT?

- Combined with (char *) data it is!
- Easy to formalize - say String.h:
typedef char *String; /* the data type */
int strlen(String); /* length of string */
int strcmp(String, String); /* compare 2 strings */ String strcpy(String, String) ; /* copy $2^{\text {nd }}$ to $1^{\text {st }}$ */
/* and so on */
- Note what doesn't matter:
- How strings are represented internally
- How these functions are implemented

Binary trees

- Each node can have 0,1 , or 2 children only
- i.e., a binary tree node is a subtree that is either empty, or has left and right subtrees
- Notice this is a recursive definition
- Concept: a leaf's "children" are two empty subtrees
- $\operatorname{Half}_{(+1)}$ of all nodes in full binary tree are leaves
- All nodes except leaves have 2 non-empty subtrees
- Exactly 2^{k} nodes at each depth $k, \forall k<$ (leaf level)
- A complete binary tree satisfies two conditions
- Is full except for leaf level
- All leaves are stored as far to the left as possible

Traversing binary trees

- Example: an expression tree (a type of "parse tree" built by advanced recursion techniques discussed in chapter 14) representing this infix expression: $4+7$ * 11

- Infix is in-order traversal - Left subtree \rightarrow node \rightarrow right subtree
- But can traverse in other orders
- Pre-order: node \rightarrow left \rightarrow right, gives prefix notation: +4 * 711
- Post-order: left \rightarrow right \rightarrow node, gives postfix notation: 4711 * +

