Postfix (and prefix) notation

e Also called “reverse Polish” — reversed form of
notation devised by mathematician named Jan
Lukasiewicz (so really lii-kéd-sha-vech notation)

e Infix notation is: operand operator operand
— Like 4 + 22
— Requires parentheses sometimes: 5 * (2 + 19)

e Postfix form is: operand operand operator
—So4 22 +
— No parentheses required: 5 2 19 + *

o Prefix is operator operand operand: + 4 22

Evaluating postfix expressions

e Algorithm (start with an empty stack):
while expression has tokens {
if next token is operand /* e.g., number */
push it on the stack;
else /* next token should be an operator */
pop two operands from stack;
perform operation;
push result of operation on stack;
¥
pop the result; /* should be only thing left on stack */

Postfix evaluation example

e Expression: 5 4 + 8 *
— Step 1: push 5
— Step 2: push 4
— Step 3: pop 4, pop 5, add, push 9
— Step 4: push 8
— Step 5: pop 8, pop 9, multiply, push 72
— Step 6: pop 72 — the result
e A bad postfix expression is indicated by:
— Less than two operands to pop when operator occurs
— More than one value on stack at end

Evaluating infix expressions

e Simplest type: fully parenthesized
—eg,(((6+9)/73)*(6-4))
e Still need 2 stacks: 1 numbers, 1 operators

while tokens available {
if (number) push on number stack;
if (operator) push on operator stack;
if (“(*) do nothing;
else { /*mustbe <)” */
pop two numbers, and one operator;
calculate; push result on number stack;

} 7* should be one number left on stack at end: the result */

Converting infix to postfix

e Operator precedence matters
- e.g,3+(10-2)*5>3 10 2 - 5 * +
e Algorithm uses one stack; prints results
(alternatively, could append results to a string)
For each token in the expression:
f (number) print it;
if (“(°) push on stack;
it ())
pop and print all operators until “(°;
discard “(°;
if (operator) /* more complicated — next slide */

Infix to postfix (cont.)

/* call current token the “new operator” */
while (stack is not empty)
{ peek at top operator on stack;
ifT (top operator precedence
>= new operator precedence)
pop and print top operator;
else break out of while loop; 3}
push new operator on stack after loop ends;

— At end, pop and print all remaining operators

o This algorithm does not account for all bad expressions —
e.g., does not check for too many operators left at end

e But can verify that parentheses are balanced

Queues

Rear Front
last enqueued 1st enqueued
last dequeued 1st dequeued

o FIFO data structure — First In, First Out

e Typical operations: enqueue (an item at rear of
queue), dequeue (item at front of queue), peek
(at front item), empty, Full, size, clear

— i.e., very similar to a stack — limited access to items

Some queue applications

e Many operating system applications
— Time-sharing systems rely on process queues

e Often separate queues for high priority jobs that take little
time, and low priority jobs that require more time (see last
part of section 7.8 in text)

— Printer queues and spoolers
e Printer has its own queue with bounded capacity
e Spoolers queue up print jobs on disk, waiting for print queue
— Buffers — coordinate processes with varying speeds
e Simulation experiments
— Models of queues at traffic signals, in banks, etc.,
used to “see what happens” under various conditions

A palindrome checker

e Palindrome - same forward and backward
— e.g., Abba, and “Able was I ere I saw Elba.”
e Lots of ways to solve, including recursive
e Can use a queue and a stack together
— Fill a queue and a stack with copies of letters
— Then empty both together, verifying equality
e Reminder — we’re using an abstraction

— We still don’t know how queues are implemented!!!
To use them, it does not matter!

Implementing queues

e Easy to do with a list:

— Mostly same as stack implementation

— Enqueue: insertLast(item, list);

— Then to dequeue and peek: refer to first item
e Array implementation is trickier:

— Must keep track of front and rear indices

— Increment front/rear using modulus arithmetic

 Indices cycle past last index to first again — idea is to reuse
the beginning of the array after dequeues

— More efficient — but can become full
o Usually okay, but some queues should be unbounded

Linked lists revisited: variations

e Some are meant to speed up operations

— e.g., O(n) complexity to access last item

e Way to make it O(1): maintain pointer to last — easy and
worth it!

e Another way: circular, double-linked list — not so easy
e Some are meant to increase usefulness
— e.g., circular list to solve Josephus problem
— e.g., generalized lists (lists of lists — upcoming topic)
e Trade-offs: use more space, harder to program

Implementing “better” lists

o Using double-linked lists — both harder and easier
— Must keep track of twice as many pointers
— Additional work required for most special cases
— But easy insert before, traverse backwards, access last
e Can use sentinel nodes that are hidden from user

— e.g., first and last sentinals — list is never really empty
e Eliminates lots of special cases — just have to “lie” to user

— e.g., n'" position sentinels — to speed access to i item
e Usually trading off: speed <> space <> effort

Generalized lists

o When list items may be sublists
— May also contain just single items — called “atoms”
o Usually implement with union in node structure

— e.g., instead of just info field, have info or sublist:
union SubNodeTag{
InfoPointer info;
NodePointer sublist;
} SubNode;
— Also need field to identify a node as atom or sublist

e Lots of applications — see text section 8.4

Is <string.h>an ADT?

o Combined with (char *) data it is!
e Easy to formalize — say String.h:
typedef char *String; /* the data type */
int strlen(String); /* length of string */
int stremp(String,String); /* compare 2 strings */
String strcpy(String,String); /* copy 2™ to 15t */
/* and so on */
e Note what doesn’t matter:
— How strings are represented internally
— How these functions are implemented

internal

[descendants of S]

Binary trees

e Each node can have 0, 1, or 2 children only
® i.c., a binary tree node is a subtree that is either
empty, or has left and right subtrees
— Notice this is a recursive definition
— Concept: a leaf’s “children” are two empty subtrees
e Half (+1) of all nodes in full binary tree are leaves
— All nodes except leaves have 2 non-empty subtrees
— Exactly 2 nodes at each depth k, vk < (leaf level)
e A complete binary tree satisfies two conditions
— Is full except for leaf level
— All leaves are stored as far to the left as possible

Representing trees by links

e Much more flexible than array representation
— Because most trees are not as “regular” as heaps (later)
— Array representation usually wastes space, and does
not accommodate changes well
e Binary tree node has two links, one for each child
typedef struct treenode {
DataType info; /*some defined data type */
struct treenode *left; /*onechild*/
struct treenode *right; /*other child */
} TreeNode, *TreeNodePointer; /*types*/

e Not a binary tree? — keep list of children instead

Traversing binary trees

° Example: an expression tree (a type of “parse tree” built
by advanced recursion techniques discussed in chapter 14)
representing this infix expression: 4 + 7 * 11

G e Infix is in-order traversal
— Left subtree - node > right subtree
° ° e But can traverse in other orders

— Pre-order: node - left - right,
gives prefix notation: + 4 * 7 11

G @ — Post-order: left > right > node,
gives postfix notation: 4 7 11 * +

