
1

Postfix (and prefix) notation
Also called “reverse Polish” – reversed form of
notation devised by mathematician named Jan
Łukasiewicz (so really lü-kä-sha-vech notation)
Infix notation is: operand operator operand
– Like 4 + 22

– Requires parentheses sometimes: 5 * (2 + 19)

Postfix form is: operand operand operator
– So 4 22 +

– No parentheses required: 5 2 19 + *

Prefix is operator operand operand: + 4 22

Evaluating postfix expressions

Algorithm (start with an empty stack):
while expression has tokens {

if next token is operand /* e.g., number */
push it on the stack;

else /* next token should be an operator */
pop two operands from stack;
perform operation;
push result of operation on stack;

}

pop the result; /* should be only thing left on stack */

Postfix evaluation example
Expression: 5 4 + 8 *
– Step 1: push 5
– Step 2: push 4
– Step 3: pop 4, pop 5, add, push 9
– Step 4: push 8
– Step 5: pop 8, pop 9, multiply, push 72
– Step 6: pop 72 – the result

A bad postfix expression is indicated by:
– Less than two operands to pop when operator occurs
– More than one value on stack at end

Evaluating infix expressions
Simplest type: fully parenthesized
– e.g., (((6 + 9) / 3) * (6 - 4))

Still need 2 stacks: 1 numbers, 1 operators
while tokens available {

if (number) push on number stack;
if (operator) push on operator stack;
if (‘(‘) do nothing;
else { /* must be ‘)’ */

pop two numbers, and one operator;
calculate; push result on number stack;

}
} /* should be one number left on stack at end: the result */

Converting infix to postfix
Operator precedence matters
– e.g., 3+(10–2)*5 3 10 2 - 5 * +

Algorithm uses one stack; prints results
(alternatively, could append results to a string)

– For each token in the expression:
if (number) print it;
if (‘(‘) push on stack;
if (‘)’)

pop and print all operators until ‘(‘;
discard ‘(‘;

if (operator) /* more complicated – next slide */

Infix to postfix (cont.)
/* call current token the “new operator” */
while (stack is not empty)
{ peek at top operator on stack;

if (top operator precedence
>= new operator precedence)

pop and print top operator;
else break out of while loop; }

push new operator on stack after loop ends;

– At end, pop and print all remaining operators
This algorithm does not account for all bad expressions –
e.g., does not check for too many operators left at end
But can verify that parentheses are balanced

2

Queues

FIFO data structure – First In, First Out
Typical operations: enqueue (an item at rear of
queue), dequeue (item at front of queue), peek
(at front item), empty, full, size, clear
– i.e., very similar to a stack – limited access to items

 Rear Front

1st enqueued
1st dequeued

last enqueued
last dequeued

Some queue applications
Many operating system applications
– Time-sharing systems rely on process queues

Often separate queues for high priority jobs that take little
time, and low priority jobs that require more time (see last
part of section 7.8 in text)

– Printer queues and spoolers
Printer has its own queue with bounded capacity
Spoolers queue up print jobs on disk, waiting for print queue

– Buffers – coordinate processes with varying speeds
Simulation experiments
– Models of queues at traffic signals, in banks, etc.,

used to “see what happens” under various conditions

A palindrome checker

Palindrome - same forward and backward
– e.g., Abba, and “Able was I ere I saw Elba.”

Lots of ways to solve, including recursive
Can use a queue and a stack together
– Fill a queue and a stack with copies of letters
– Then empty both together, verifying equality

Reminder – we’re using an abstraction
– We still don’t know how queues are implemented!!!

To use them, it does not matter!

Implementing queues
Easy to do with a list:
– Mostly same as stack implementation
– Enqueue: insertLast(item, list);
– Then to dequeue and peek: refer to first item

Array implementation is trickier:
– Must keep track of front and rear indices
– Increment front/rear using modulus arithmetic

Indices cycle past last index to first again – idea is to reuse
the beginning of the array after dequeues

– More efficient – but can become full
Usually okay, but some queues should be unbounded

Linked lists revisited: variations

Some are meant to speed up operations
– e.g., O(n) complexity to access last item

Way to make it O(1): maintain pointer to last – easy and
worth it!
Another way: circular, double-linked list – not so easy

Some are meant to increase usefulness
– e.g., circular list to solve Josephus problem
– e.g., generalized lists (lists of lists – upcoming topic)

Trade-offs: use more space, harder to program

Implementing “better” lists

Using double-linked lists – both harder and easier
– Must keep track of twice as many pointers
– Additional work required for most special cases
– But easy insert before, traverse backwards, access last

Can use sentinel nodes that are hidden from user
– e.g., first and last sentinals – list is never really empty

Eliminates lots of special cases – just have to “lie” to user

– e.g., nth position sentinels – to speed access to ith item
Usually trading off: speed ↔ space ↔ effort

3

Generalized lists
When list items may be sublists
– May also contain just single items – called “atoms”

Usually implement with union in node structure
– e.g., instead of just info field, have info or sublist:

union SubNodeTag{
InfoPointer info;
NodePointer sublist;

} SubNode;

– Also need field to identify a node as atom or sublist
Lots of applications – see text section 8.4

Is <string.h> an ADT?

Combined with (char *) data it is!
Easy to formalize – say String.h:
typedef char *String; /* the data type */
int strlen(String); /* length of string */
int strcmp(String,String); /* compare 2 strings */
String strcpy(String,String); /* copy 2nd to 1st */
/* and so on */

Note what doesn’t matter:
– How strings are represented internally
– How these functions are implemented

Trees

R

S T

WVUX

Y Z

root

leaf

internal
node

child of R

parent
of Y, Z

descendants of S

Binary trees
Each node can have 0, 1, or 2 children only
i.e., a binary tree node is a subtree that is either
empty, or has left and right subtrees
– Notice this is a recursive definition
– Concept: a leaf’s “children” are two empty subtrees

Half (+1) of all nodes in full binary tree are leaves
– All nodes except leaves have 2 non-empty subtrees
– Exactly 2k nodes at each depth k, ∀k < (leaf level)

A complete binary tree satisfies two conditions
– Is full except for leaf level
– All leaves are stored as far to the left as possible

Representing trees by links
Much more flexible than array representation
– Because most trees are not as “regular” as heaps (later)
– Array representation usually wastes space, and does

not accommodate changes well
Binary tree node has two links, one for each child
typedef struct treenode {

DataType info; /* some defined data type */
struct treenode *left; /* one child */
struct treenode *right; /* other child */

} TreeNode, *TreeNodePointer; /* types */

Not a binary tree? – keep list of children instead

Traversing binary trees

Example: an expression tree (a type of “parse tree” built
by advanced recursion techniques discussed in chapter 14)
representing this infix expression: 4 + 7 * 11

+

4 *

7 11

Infix is in-order traversal
– Left subtree node right subtree

But can traverse in other orders
– Pre-order: node left right,

gives prefix notation: + 4 * 7 11
– Post-order: left right node,

gives postfix notation: 4 7 11 * +

