
1

Implementing tree traversals
Naturally recursive functions
– Order of recursive calls determines traversal order

Remember recursive ruler tick-mark drawing?

e.g., function to “visit” nodes in-order:
void inOrderTraverse(TreeNode *n) {

if (n != NULL) {

inOrderTraverse(n->left); /* A */
visit(n); /* B */
inOrderTraverse(n->right); /* C */

}
}

Pre-order: B A C; Post-order: A C B

Binary search trees – BSTs

Order rule for BSTs –
for a tree node, n:
– Info in left subtree of n

is less than info in n
– Info in right subtree of n

is greater than info in n
Tree may not contain
any duplicate info
No rule for tree shape
(except must be binary)

46

11 77

693 91

Searching a BST iteratively
e.g., return pointer to node with “key” info:
TreeNodePointer n = tree; /* aim at root */
while (n != NULL && n->info != key)

if (key < n->info) /* search left subtree */
n = n->left;

else /* search right subtree */
n = n->right;

return n; /* either NULL, or node with key info */
Each iteration eliminates half of remaining nodes
– So logarithmic complexity class
– Similar result applies to many binary tree functions

Searching a BST recursively
Must have access to nodes
TreeNodePointer findNode(DataType key,

TreeNodePointer n){ …
if (n is NULL || n->info equals key)

return n; /* works for both base cases */
else if (key is less than n->info)

return findNode(key, n->left);
else return findNode(key, n->right);
}

BST search efficiency
Q: what determines the average time to find a
value in a tree containing n nodes?
A: the average path length from root to nodes
– How long is that?
– If full tree, then 1 node at depth 0, 2 nodes at depth 1, 4

nodes at depth 2, 8 nodes at depth 3, …, to log n depths

∑
=

⋅⋅=
n

i

i i
n

average
log

0

21 nlog≈

But …
– … tree must be balanced!
– Or complexity can reach O(n)

→

46

11

77

69

91

3

Insert to a BST

Same general strategy as find operation:
if (info < current node) insert to left;
else if (info > current node) insert to right;
else – duplicate info – abort insert;

Use either iterative or recursive approach
2 potential base cases for recursive version
– Already in tree – so return false; do not insert again
– An empty tree where it should go – so set parent link

2

Insertion order affects the tree?

Try inserting these values in this order:
6, 4, 9, 3, 11, 7
Now insert same values in this order:
3, 4, 6, 7, 9, 11
Moral: sorted order is bad, random is good.
Alternative is to set up self-balancing trees
(see AVL trees in text)

Deleting a node (outline)
All depends on how many children the node has
No children: no problem – just delete it (by setting
appropriate parent link to NULL)
One child: still easy – just move that child “up”
the tree (set parent link to that child)
Two children: more difficult
– Basic strategy: replace node’s info with (either) largest

value in its left subtree (or smallest in right subtree) –
can lead to 1 more delete

Heaps – another type of tree
Complete binary trees, whose items must
be comparable and stored in heap order
– Heap order – a node’s information is never

less than the information of one of its children

91

77 46

1169 3

91

77 46

1169 3

52

77 46

1169 3

OK

! complete

! order

Inserting an item in a heap
insertHeap algorithm keeps complete / in order:
put item in first available slot; /*keep complete*/
while (new info > parent info)

swap info with parent; /* “reheapify” */

91

77 46

1169 40 30

40 15 3

before
insert(80) 91

77 46

1169 40 30

40 15 3

step 1

80

91

46

1169

40

30

40 15 3

2 steps
later: done

80

77

Implementing a heap
Convenient to implement as an array
– Root: [1]; root children: [2,3]; their children: [4:7] …
– Works because of binary completeness requirement –

tree is full at all depths except leaves
e.g., insertHeap algorithm
– Step 1: put item at end of array;

O(1) complexity, unless array is filled up
– Step 2 until done: reheapify by array indexing;

Have parent of array[i] at array[i/2], ∀ i>1
O(log n) complexity to reheapify this way

So complexity of insertHeap is O(log n) overall

