
1

Using a heap as a priority queue
To remove highest priority item from heap:
remove root; / * O(1) complexity */
Move last item to root, then …
heapify in reverse; / * O(log n) complexity */
– So overall complexity is O(log n)

Also O(log n) for insert function
Compare to other priority queue strategies
– Sorted list: insert – O(n); remove – O(1)
– Unsorted array: insert – O(1); remove – O(n)

Choose heap strategy if n is expected to be large

A table ADT
Declare Table type (define in implementation)
typedef struct TableTag Table;
– Also define a KeyType, and maybe a DataType (or just use void *)

Let user define initial size of table
Table *createTable(int startingSize);

Can put/get/update/remove info associated with unique key
int put(KeyType key, void *info, Table *table);
void* get(KeyType key, Table *table);
int update(KeyType key, void *info, Table *table);
int remove(KeyType key, Table *table);
– Functions return false if unsuccessful (except get returns NULL)

Can print all info, usually in key order
void printAll(Table *table);

Table implementation options

Many possibilities – depends on application
– And how much trouble efficiency is worth

Option 1: use a BST
– To put: insertTree using key for ordering
– To update: deleteTree, then insertTree
– To getAll: use in-order traversal

Option 2: sorted array with binary searching (later)

Option 3: implement as a “hash table”
– Hashing – general technique works great with tables

Hashing ideas and concepts
Idea: transform arbitrary key domain (e.g.,
strings) into “dense integer range” – then use
result as index to table
– index = hash(key); /* function returns int */

Collisions: hash(k1)==hash(k2), k1 != k2
– Usually impossible to avoid (“perfect hashing”), so

must have a way to handle collisions
– e.g., probe for empty slot if using “open addressing” -
while (!empty(index)) index = probe(key);

Concept: insertion/searching is quick – but only
until the table starts to get filled up
– Then collisions start happening too often!

Open address hashing
– & implementing basic table ADT

Define structs for table items and whole table of items
typedef struct

{ KeyType key; void *info; } TableItem;
typedef struct

{ int size; int n; TableItem *items; } Table;
– size is size of array; n is the number of items in the table
– Constructor allocates memory for array of items, and initializes

all items to “empty” key
The put function uses hash(key) and probe(key) to
find empty slot for new item
– Resizes array (and rehashes existing items) whenever table “load

factor” reaches 50 percent (rule of thumb for open addressing)

Open address hashing (cont.)
get & update functions use hash(key) and
probe(key) in exact same sequence as put – to
find existing info
remove is more complicated
– Cannot just remove an item – future probes for get

and update might terminate prematurely at empty slot
– Inefficient technique rehashes all items
– Alternative technique uses “deleted” key markers

But problem with that is table fills up prematurely
printAll in key order – must sort first!
– So O(n log n) at best!

2

Resolving collisions
Simplest open address approach is linear probing
– If (index = hash(key)) is not empty, try index+1,

then index+2, …, until empty slot
– In other words, searching for first “open address”
– Biggest problem: it leads to “primary clusters”

Quadratic probing – varies probe, like 1, 3, 6, …
– Leads to “secondary clusters” but not as quickly

Double hashing – probe(key) varies by key
– Best open addressing approach for avoiding clusters

Or a completely different approach: “chaining”

Chaining
Table is an array of pointers to lists:
typedef struct TableTag

{ int size; int n;
ListPointer *lists; };

Constructor allocates memory for array, and creates an
empty list for each element of the array
put function uses hash(key) and appends to end of list
– Clustering not a problem, but long lists can be, so rule

of thumb is resize when load factor approaches 80%
remove function is easier now – just delete from list
But lots more overhead than open addressing
– Must store node pointers as well as key and info
– Use list function calls instead of direct array access

Recursive binary searching
Start with a sorted array: a[0..n-1]
– Useful item in a is struct{key, info} ItemType;

Binary searching algorithm is naturally recursive:
int bsearch(KeyType key, ItemType a[],

int left, int right) {
/* first call is for left=0, and right=n-1 */
int middle = (left + right) / 2;
if (key == a[middle].key) return middle; /* success */
if (left > right) return -1; /* unsuccessful */
if (key > a[middle].key) /* search one half or the other */

return bsearch(key, a, middle+1, right);
else return bsearch(key, a, left, middle-1);

}

Iterative version is a little trickier (but not too hard)

Iterative binary searching
int bsearch(KeyType key, ItemType a[], int n) {

int low = 0, high = n-1, middle;
while (low <= high) {

middle = (low + high) / 2;
if (key == a[middle].key)

return middle; /* success */
if (key > a[middle].key) low = middle + 1;
else high = middle – 1;

}
return -1; /* unsuccessful */

}

Both versions are same complexity class
– But recursive version has more overhead, so actually

runs a bit slower than iterative version
– Interpolation search, by the way, is in a faster class

Complexity of binary search
Say array has 15 elements, k1..k15: a[0..14]
– If key is at k8 (a[7]) then found by 1 comparison
– If key is at k4 or k12, takes 3 comparisons …

i.e., it’s just like searching a BST

k8

k4 k12

k10k2 k6 k14

k1 k3 k5 k7 k11 k15k9 k13

Problem size is halved
at each step
– So complexity class is
O(log n)

Interpolation search
reduces more quickly
– Class is O(log log n)

Compare 3 table implementations

Conclusion – depends on table purpose & n size
– Hash table wins for most applications if n is large
– BST wins if expect to printAll frequently
– Sorted array might win for small n – to minimize overhead/work

O(n)O(n)O(n log n)printAll

O(n)O(log n)O(1)remove

O(n)O(log n)O(1)put

O(log n)O(log n)O(1)find, get, update

O(n)O(1)O(n)create

Sorted arrayBSTHash tableTable operation

3

Sorting
Probably the most expensive common operation
Problem: arrange a[0..n-1] by some ordering
– e.g., in ascending order: a[i-1]<=a[i], 0<i<n

Two general types of strategies
– Comparison-based sorting – includes most strategies

Apply to any comparable data – (key, info) pairs
Lots of simple, inefficient algorithms
Some not-so-simple, but more efficient algorithms

– Address calculation sorting – rarely used in practice
Must be tailored to fit the data – not all data are suitable
Won’t cover in CS 12 – see proxmap and radix sorts in sec. 13.6

Selection sort

Idea: build sorted sequence at end of array
At each step:
– Find largest value in not-yet-sorted portion
– Exchange this value with the one at end of unsorted

portion (now beginning of sorted portion)
Complexity is O(n2)– but simple to program
– Also – best way to find kth largest, or top k values

largest

 sorted

Insertion sort
Generally “better” than other simple algorithms
Inserts one element into sorted part of array
– Must move other elements to make room for it

current

Complexity is O(n2) (code)

– But runs faster than selection sort and others in class
– Really quick on nearly sorted array

Often used to supplement more sophisticated sorts

Divide & conquer strategies
Idea: (1) divide array in two; (2) sort each part;
(3) combine two parts to overall solution
e.g., mergeSort
if (more than one item in array):

divide array into left half and right half;
mergeSort(left half); mergeSort(right half);
merge(left half and right half together);

– Requires helper method to merge two halves
– Complexity is O(n log n)
– The best sort for large files (too big for memory)

But for most problems, quickSort is a better
divide & conquer strategy

Quick sort
Basic quicksort algorithm is recursive
if (there is something to sort)
{ partition array elements;

sort left part; sort right part;

} /* It’s the utility partition function that does all the work! */
Partition idea: arrange elements around an arbitrary pivot

all <= pivot all >= pivot
pivot

scan from (i = left) until a[i] >= pivot;
scan from (j = right) until a[j] <= pivot;
swap a[i], a[j];
continue both scans until i > j; (code)

Quick sort (cont.)
Complexity is O(n log n) on average
– Fastest comparison-based sorting algorithm
– But overkill, and not-so-fast with small arrays

One frequently-used optimization applies insertion sort for
partitions smaller than than 10 or so

But worst case is O(n2)!
– Just like BST worst case – sorted order can be bad

Especially if first or last is chosen as pivot – middle is better

By the way – see qsort in <stdlib.h> (code)

– Also by the way – see O(n) address calculation sorts
if really fast sorting is required for an application

