
Underlying computer system Underlying computer system
= hardware + software= hardware + software

Thanks to Chandra Krintz and Kevin Sanft, for this figure and some other parts of these lecture notes.

Processing data & instructionsProcessing data & instructions
Program instructions and data are in memory
– CPU tracks which instruction it’s on using a dedicated register

(PC) which holds the address of the instruction
CPU stores the next few instructions in a cache – much
faster to access than memory
– Similarly stores data used by the instructions in a data cache
– For even faster access, the CPU stores some data values and

addresses in registers (fewer in number than cache entries and
even faster to access than cache)

CPU components (hardware registers, ALU, bus) all use
same data width (e.g., 32 bit or 64 bit)

Processing (continued)Processing (continued)
System bus = address bus + data bus + other signals
(wires)
– CPU requests the next instruction address by putting it on the

address bus (wires connected to pins)
– CPU requests data used by the instruction (operands) by putting

the addresses on the data bus
CPU toggles other pins to identify which devices
(memory, IO) it wishes to access – and whether it wants
to read or write
Devices use special wires/pins to alert the CPU that the
data that the CPU requested are ready
– The CPU doesn’t block after a request, it goes onto another task

until the device “interrupts” it with the data.

Things to ponderThings to ponder

How are all of these computer operations
managed effectively?
– After all, the CPU just responds to the next

instruction. So how are all the instructions
managed, especially when there are many
clients (users, processes)?

How are we – and our simple programs –
able to deal with such a complex system?
– Don’t we need an intermediary?

Operating systems: two viewsOperating systems: two views
Top-down view: an OS is software that isolates
us from the complications of hardware resources
– In other words, an OS is an application programmer’s

and a user’s interface to computer operations

Bottom-up view: an OS is software that allocates
and de-allocates computer resources – efficiently,
fairly, orderly and securely

Types of operating systemsTypes of operating systems

Single-user, single-process – i.e., one customer,
and one job at a time
Single-user, multi-process – one workstation, but
lots of stuff running
– Actually the CPU handles just one process at any

moment – jobs are swapped in/out in “time slices”
Multi-user, multi-process – e.g., Unix/Linux
– Same idea, but much more swapping to do
– And added fairness, efficiency and security concerns

Unix Unix history (Linux prequel)history (Linux prequel)
AT&T Bell Labs – System V standard
– 1969-70: Ken Thompson wrote Unix in “B”
– 1972: Dennis Ritchie developed C – a better B
– Unix rewritten in C, 1973
– … eventually System V, 1983

UC Berkeley – BSD standard
– Started with a copy of System IV, late 1970s
– Lots of changes/additions in 1980s
– Now FreeBSD

Open source – Linux, since early 1990s

Unix philosophy (same as C)Unix philosophy (same as C)

Small is beautiful
– Each program does just one thing
– Pipe commands (or use successive functions in C) to

accomplish more complicated things
– Less typing is best (using 1970s computers)

That’s why so many commands are short (ls, cp, mv, …)

Users/programmers know what they are doing
– That’s what makes the brevity sufficient
– Means very few restrictions (or safety nets) apply

LinuxLinux
Linus Torvalds created it as a Finnish
undergraduate student
Posted on Internet in 1991
– Open source – licensed under GPL
– Version 1.0 in 1994; version 2.2 in 1999
– 1000’s of programmers working to enhance it

When programmers worldwide can read, modify,
and redistribute a program’s source code, it evolves.
– People improve it, adapt it, fix bugs, …

What is Linux?What is Linux?
A fully-networked Unix-like operating system
Multi-user, multitasking, multiprocessor system
– Fundamental in the system’s design and implementation
Has both command-line and graphical interfaces
Coexists with other operating systems
Runs on multiple platforms
Distribution includes the source code
Can download it free from the Internet!

The Linux SystemThe Linux System

Thanks again to Chandra Krintz and Kevin Sanft.

Linux kernel Linux kernel –– the actual OSthe actual OS

Manages processes
– Starts, stops, suspends, swaps, manages inter-process

communication, …
– Maintains their state

Manages files (and directories)
Manages main memory
Manages disk operations
Delegates to CPU(s), printers, other I/O devices

CPU schedulingCPU scheduling

Kernel sends interrupt to a process to give
another process a turn to use the CPU
Processes can give up CPU when they
don’t need it (e.g. waiting on I/O device)

Processes Processes requestrequest kernel serviceskernel services

Using system calls (read, write, fork, …)
– OOP idea: these are the kernel’s interface
– Processes access devices just like files – that’s

how they are represented by the kernel, and
they occupy places in the file system

Use open, close, read, write, release, seek, …

Or indirectly, by using shell commands or
libraries/programs that use system calls

Linux file systemLinux file system
Rooted,
hierarchical
– Data files are

stored in
directories

A file’s (full)
pathname
starts at the
root
– /etc/passwd
– /home/neale/b

Directories

User home
directories

Data files

root

A A simplesimple computer modelcomputer model

This and the next six figures derived from B. Molay’s Understanding Unix/Linux Programming, Pearson 2003.

Some “big picture” ideas

An example programAn example program
#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF)

putchar(c);
}

More realistic computer modelMore realistic computer model

How connected? Not like this!How connected? Not like this!

OS manages everything!OS manages everything!

OOP idea: OS provides OOP idea: OS provides
servicesservices

User interface is the User interface is the shellshell

ShellShell

A program that runs in a terminal and
provides a command-line interface for user
An interpreter that executes user
commands
Also a powerful programming language
– Shell script – a sequence of commands in a file

Lots of different shells to choose from
– sh, csh, tcsh, bash …
– We’ll focus on bash (and sh scripts) in this course

Special file namesSpecial file names
. (by itself) The current directory
– ./a is the same as a
.. The parent (toward root) directory
– ../jane/x go up one level then look in

directory named jane for x
~ Your home directory
– ~harvey Username harvey’s home directory

Have to “escape” spaces with a backslash
– my\ file\ name\ with\ spaces
– Moral: don’t use spaces in file or directory names!

ObjectObject--oriented perspectiveoriented perspective
Operating system = computer interface

Shell/libraries/system calls = OS interface

Will return to OS topics
(processes, …) in upcoming
lectures. Now: OO intro.

Starting Reader #2

ObjectsObjects

Include things
– Stack, queue, list, …
– Window, spaceship, recipe, …

Also include concepts
– Power, trajectory, mood, …

Can represent people, places, roles, …
In programming: an object is a software
entity encapsulating data and/or methods

Imperative programming Imperative programming (not OOP)(not OOP)
Data, and the operations that manage the data are
separate entities (physically and logically)

What are implications of this programming style?

Kay’s Description of OOP
1. Everything is an object.
2. Objects perform computations by making

requests of each other through the passing of
messages.

3. Every object has its own memory, which
consists of other objects.

4. Every object is an instance of a class. A class
groups similar objects.

5. The class is the repository for behavior
associated with an object.

6. Classes are organized into a singly-rooted tree
structure, called an inheritance hierarchy.

Alan Kay:
“Simple
things
should be
simple,
complex
things
should be
possible.”

Solving problems Solving problems withwith objectsobjects

First decide what objects are needed
– Instead of what functions are required
– And instead of how specifically to handle data

Then give each object responsibilities
– Which probably include storing some data and

performing some functions
Finally, have objects interact by sending
messages (usually method calls) to one another
– i.e., they collaborate to fulfill responsibilities

BuddBudd’’s s ““real lifereal life”” exampleexample

Budd decides to send flowers to his grandmother
First he selects an agent: Flo, a capable florist
– Then he sends a message to Flo – not unlike:
flo.sendBouquet(1, &grandma);

The next step is Flo’s responsibility
– Budd does not participate in this part of the process
– Likely that many other agents do participate though!

Finally Flo probably sends a message to Budd:
budd.pay(bouquetPrice, this);

Elements of OOP Elements of OOP -- ObjectsObjects

1. Everything is an object
– Actions in OOP are performed by agents, called

instances or objects.
Several agents in the example scenario, including
Budd, Grandma, Flo, the florist in Grandma’s
city, driver, flower arranger, grower
– Each agent has a part to play, and the result is

produced when all work together in the solution of a
problem.

Elements of OOP Elements of OOP -- MessagesMessages
2. Objects perform computations by making
requests of each other through the passing of
messages.
– Actions in OOP are produced in response to requests

for actions, called messages. An instance may accept a
message, and in return will perform an action and
return a value.

To begin the process of sending the flowers,
Budd gives a message to Flo. She in turn gives a
message to the florist in Grandma’s city, who
gives another message to the driver, and so on.

Information hidingInformation hiding

Notice how a user of a service being
provided by an object, need only know the
name of the messages that the object will
accept.
– They need not have any idea how the actions

performed in response to these requests will
be carried out.

Having accepted a message, an object is
responsible for carrying it out.

Receivers and behaviorReceivers and behavior
Messages differ from traditional function
calls in two very important respects:

a) A designated receiver accepts the message
b) The interpretation of the message may be

different, depending upon the receiver
Although different objects may accept the
same message, the actions (behavior) the
object will perform will likely be different

– Might not even know what behavior to perform
until run-time – a form of late binding

Elements of OOP Elements of OOP –– Recursive Recursive
DesignDesign
3. Every object has its own
memory, which consists of
other objects.
– The structure of the part mirrors

the structure of the larger unit.
Principle of non-interference:
“Ask not what you can do to
your data structures, but ask
what your data structures can
do for you.” (Budd)

Elements of OOP Elements of OOP -- ClassesClasses

4. Every object is an instance of a class. A
class groups similar objects.
– Flo is an instance of the class Florist

5. The class is the repository for behavior
associated with an object.
– All objects that are instances of a class use the

same method in response to similar messages.

Elements of OOP Elements of OOP -- InheritanceInheritance
6. Classes are
organized into a
singly-rooted tree
structure, called an
inheritance hierarchy
Data and general
behavior at one
abstraction level
extend to lower levels
– But can override

behavior (a later topic)

