Creating and assigning (=) objects

e Declaring an object creates the object
DayOfYear today, tomorrow;

// two objects are created on stack
e Different if declaring pointers (or references)
DayOfYear *soon, &r = today; // no object
soon = new DayOfYear; // now object on heap
e Assignment operator copies object’s data
r = *soon; // no new object—just copy on stack
/l original (today) object data overwritten

Tha Raskiccomnt Ehass [t o8)

Another class
example:
BankAccount

e Has operations
appropriate for a
bank account
(implemented with
public member
functions)

— And a private
utility function

e Stores an account
balance and an
interest rate

Method
overloading —
BankAccount: :set

e A method's signature
includes its name and
its parameter list

e Can overload a name
like set with a different
parameter list

— Number, types, order

More implementing BankAccount

The Saridccount Class (parr 3 of £

Sample BankAccount results

The BankAccount Class [part 4 of 4)

Sample Dialogue /I excerpts from main:
start of Test: accountl.set(123,99,3);
accountl initial statement: // called with all 3 arguments
Account balance $123.99
Interest rate 3.00% -
accountl with new setup: accountl.set(lQO,S) i
Account balance $100.00 /I called other version of set
Interest rate 5.00%
accountl after update: -
Account balance $105.00 accountl.update();
Interest rate 5.00%
AL account2 = accountl;

Account balance $105.00
Interest rate 5.00%

Q: What if account2.update()?

Constructors

e A constructor (a.k.a. ctor) is a member function

— Usually declared public
e One is always called when an object is created
e Main purpose — initialize instance variables

— Also useful to allocate resources if needed
e Constructor's name must be the name of the class
e A constructor cannot return a value

— No return type, not even void

A BankAccount constructor

e Declare in public part of class definition
BankAccount(int dollars, int cents, double rate);
o Implement essentially like other methods
BankAccount: :BankAccount(int dollars, int cents,
double rate) {

if ((dollars < 0) Il (cents < 0) || (rate < O)) {
cout << "lllegal values for money or rate\n";
exit(l);

balance = dollars + 0.01 * cents;
interest_rate = rate;

Constructor call is automatic

e May not invoke (i.e., call) it directly:
accountl.BankAccount(10, 50, 2); // ERROR
e Instead invoke indirectly
— On stack: BankAccount accountl1(10, 50, 2);
— Or free store: ... new BankAccount(10, 50, 2);
e But class must have a matching constructor
— €.0., BankAccount() if just new BankAccount;

o Default constructor is called — but oops: ERROR if
explicit constructor is defined and not overloaded!

Overloading and the default ctor

e Another possible BankAccount ctor:
BankAccount (double balance, double interest_rate);
e Or can have either one of the following. Why not both?
BankAccount (double balance);
BankAccount (double interest_rate);
e Also either explicitly define default ctor:
BankAccount ();
Or implicitly via default arguments in other ctors:
BankAccount (double balance = 0.0);
e Tip: good idea to always include a default ctor even if
there’is no need to initialize variables
- So clients can: BankAccount checking, savings;
— Important for inheritance reasons too (a future topic)

Base/member initialization list

e An initialization section in a constructor definition
provides an alternative way to initialize member variables
BankAccount: :BankAccount() : balance(0), interest_rate(0)

{ 3 //still need a body (even if intentionally empty like this case)
— Canuse parameter names too — even if same name as member!
o Note: order of initialization matches the order in which the
variables are declared in the class, not their order in the list
e Must use such a list for constants and reference variables
(since references are always constant)
— Also must use to initialize private data in a base class (later topic)
e Should always use for user-defined types if default ctor not
appropriate — to avoid extra ctor (and destructor) calls

Starting Reading #3

Back to the OS — processes

Later: on to advanced
class design (Savitch
Chapter 11)

Processes

e A process is an executable, machine language program
that the OS (Linux) has been asked to run

— Copied to memory, and assigned a process 1D (PID)
— Scheduled for execution by the CPU
e Processes create other processes Via system calls
— A program (e.g., in C or C++) creates a new process
and terminates itself with a call to exec

— A program creates a child process by calling fork

- e.g.$> ./myscript
e First line is: #1/bin/bash
e bash runs (interprets script) L ferk

@ Child

Parent

Steps to execute a program (sort

Step1: Shell uses fork to Step 2: Child uses exec to overwrite itself with
create a child the executable file corresponding to
the sort command,

@ Pasnt @ parent
@ o O

Step3: sort starts execution while ‘bash’ waits for the command ta finish, When sart
finishes, the child process terminates and ‘bash’ starts execution again, waiting
for the user to give it another command to execute.

Steps to execute a shell script

Step3

@ Parent

Process hierarchy

e init—is PID 1, but all other processes have parents (so PPID)
— The process hierarchy's depth is limited only by available
virtual memory
e A process may control the execution of any of its descendants
— Can suspend or resume it
— Can alter its relative priority
— Can even terminate it completely

e By default, terminating a process will terminate all of its
descendants too

— So terminating the root process will terminate the session

Example Linux process hierarchy

f
1 . hd e | aaa L4 1
Khushd (O) kswapd () mingetty () mingetty () mingetty mingrl'.vé h'.rpdé) crond (O inetd O
wsmd)
1

i
sart () find

(From Linux-specific version of Sarwar et al. text)

Linux process states
J Swapped
* pl:cs)fsggsecan be f

'running"t_at /
any one time
e OS has other ' (o) -
processes in \ /
various states

e A process \

may be cycled

AY

through many el

states before’it !

terminates _
Sleeping

Meanings of Linux process states
[Tt

Ready The process is ready to run but doesn't have the CPU. Based on the scheduling
algorithen, the scheduler decided to give the CPU to another process. Several
processes can be in this state, but on a machine with a single CPU, only one
can be executing (sing the CPUI.

Running The process is actually nanning {using the CPU)

Waiting The process is walting for an event. Possible events are an 1/0 (e.g., disk/
terminal read or write) is completed, a child process exits (parent waits for one
o mare of its children ta exit), or the sleep period expires far the pracess.

Swapped The process is ready to run, but it has been temposarily put on the disk (on the
swap space); perhaps it needs more memary and there isn't encugh available
at this time.

Zombie When the parent of a process terminates before it executes the exit call, it be-
comes a zombie process, The process finishes and finds that the parent isn’t
waiting. The zomble processes are finished for all practical purposes and don't
reside in the memory, but they still have some kernel resources allocated to
them and can't be taken out of the system. All zombies (and their live childeen)

lly adopted by th the iniit process, which removes them
from the system. In general, any dying process ks said to be in the zombie state.

Foreground and background

e When a command is executed from the prompt and runs
to completion at which time the prompt returns, it is said
to run in the foreground

e When a command is executed from the prompt followed
by the token ‘&' on the command line, the prompt
immediately returns while the command is said to run in
the background

e Programs that interact with a user should be run in the
foreground

e Programs that execute slowly and without intervention
belong in the background - so other work can get done!

— e.g., daemons (background processes for system administration)

User control of process state

e Terminate a foreground process with ctrl-C
e Send running foreground process to background by ctrl-Z
-bash-4.2$ find /7 *.txt > /dev/null 2> /dev/null
< entered ctrl-Z here
[1]+ Stopped find / *.txt > /dev/null 2> /dev/null
-bash-4.2$ & can execute more commands while find works
— Ifenter fg 1 now, job 1 will execute in foreground again
e Use ps to find PIDs of running processes
-bash-4.2% ps
PID TTY TIME CMD
20637 pts/4 00:00:00 bash
21581 pts/4 00:00:02 find
21632 pts/4 00:00:00 ps
e Terminate a background process with kill command
bash-4.2% kill -9 21581 < -9 is the "sure kill" signal number
-[1]+ Killed find / *.txt > /dev/null 2> /dev/null

Fields of ps -1 output (cont. next slide)

Fields of ps -1 output (cont.)

RSS Resident set size: The amount of physical memory in kilobytes; it does not in-
clude space taken by the page table and kernel task structure for the process,

WCHAN Wait channel: Null for running processes, or processes that are ready to run
and are waiting for the CPU to be given to them. For a waiting or sleeping
process, this field lists the event the process is waiting for—the kemel function

Field Meaning

F Flags: Flags associated with the process. It indicates things like whether the
process is a user or kernel process, and why the process stopped or went to
sleep.

uio User ID: Process owner's user 1D

PID Process |D: Process 1D of the process

PPID Parent PID: PID of the parent process

PRI Priority: Priority number of a process that dictates when the process is
scheduled.

NI Nice value: The nice value of a process; another parameter used in the compu-

tation of a process's priority number.

where the process resides,
STAT Process state: See phext slide.
Y Terminal: The terminal name a process is attached to
TIME Time: The time {in minutes and seconds) a process has currently been running

for, or previously ran for before sleeping or stopping.

vs2 Virtual size: The number in this field is the size of the memary image of a
process (codesdatasstack) in blocks.

COMMAND Command: Lists the command line that was used to start this process, The £
option is needed to see the full command line; otherwise only the last compo-
nent of the pathname is displayed.

Process state abbreviations

Uninterruptible sleep (usually doing 1/0 or waiting for it)

Low-priority process (a process that has been niced)

Runnable process: waiting to be scheduled to use CPU

Sleeping

Traced or stopped

A zombie (defunct) process

A process that is completely swapped on the disk {no resident pages)

in-wnzng

