
More class design with C++

Starting Savitch Chap. 11

Member or non-member function?

Class operations are typically implemented as
member functions
– Declared inside class definition
– Can directly access private members
– Usually the task involves only one object (this)

But some operations are more appropriate as
ordinary (nonmember) functions
– Declared outside any class definition
– Usually the task involves more than one object
– Cannot access private members of a class though

Unless they are friends of the class

Implementing an ordinary function

Consider an equality function for DayOfYear
– Comparing two objects, so a non-member function
bool equal(DayOfYear date1, DayOfYear date2) {

return date1.get_month() == date2.get_month()
&& date1.get_day() == date2.get_day();

}

Why is function equal not very efficient?
– Each call to a public accessor function requires

"overhead" costs – to manage new stack frames
– Accessing date1.month is simpler, more efficient

But it is also illegal! Unless …

friends
Can be a function or (rarely) a whole other class
Not class members, but can access private members
of a class that has declared it as a friend
Declared inside class by keyword friend
class DayOfYear {
public:

friend bool equal(DayOfYear date1,
DayOfYear date2);

Implement without DayOfYear::
– Okay to use private members of DayOfYear though

A Money class with a friend
class Money {
public:

friend Money add (Money, Money);
...

private:
long cents;

};
Money add (Money amt1, Money amt2) {

Money temp;
temp.cents = amt1.cents + amt2.cents;
return temp;

}
Why is this still inefficient? How to improve it?

Parameter passing efficiency

The add function uses “call-by-value” parameters
– Copies of objects are created and then later destroyed

Using “call-by-reference” parameters is more
efficient – no copies (at that stage anyway):
friend Money add (Money &, Money &);
...
Money add (Money &amt1, Money &amt2) {...}

But a new problem now: can’t pass it constant
objects – even though it doesn’t change them

const
Part of an object’s type in C++
const int x = 12;

// must initialize on creation; can never change afterwards
someFunction(x);

// error if parameter is int& without const
Good classes support constant objects: “SCO”
friend Money add (const Money &, const Money &);...
Money add(const Money &amt1, const Money &amt2){…}

But what about amt1.getCents() inside add?
– Answer: won’t compile! Unless getCents() is const too:

long getCents() const;...
long Money::getCents const { return cents; }

Operator function overloading
Example: ADT operator+(const ADT &, const ADT &);
– Overloads + to return an ADT object (hopefully the sum of the two

ADT arguments – best to not change operator’s meaning)
Can overload almost any C++ operator
– At least one argument must be a user-defined type
– Precedence, “narity”, and associativity rules apply as usual

e.g., + has usual precedence, is binary or unary, l-r
e.g., = has lower precedence, is binary only, r-l

– See other rules on page 629 of the Savitch text
But “just because you can does not mean you should”
– e.g., a bad idea to overload , or && or || even if legal
– And should always maintain the expected operator behavior

Operator functions for Money
Replace add function with operator +
friend Money operator+

(const Money &, const Money &);...
Money operator+(const Money &amt1, const
Money &amt2){ /* same implementation as add */ }

Replace equal function with operator ==
friend bool operator== (const Money &,
const Money &);...

bool operator== (const Money &amt1,
const Money &amt2) {
return amt1.cents == amt2.cents;

}

2 ways to use operator functions

Money a(100), b(50); // two Money objects
Can add/compare by functional notation:
Money sum1 = operator+(a, b);

if (operator==(a, b)) … // false in this case
But now can use infix notation too:
Money sum2 = a + b;

if (sum1 == sum2) … // true in this case
By the way: C++ will try to convert any function
argument to match the parameter type
if (sum1 == 150) … // still true! See next slide.

Implicit type conversion in C++
Converting ctors – e.g., Money(long dollars);
– Any ctor that takes exactly one argument
– Invoked whenever an argument of that type is passed

to a function that expects an object
In the case on previous slide – 150 converted to Money(150)

Operator conversion functions – inverse idea
– Specify types to which an object may be converted
– Say class Money has operator double() const;

Means a Money object can be implicitly converted to
double in certain circumstances, like cout << sum1;

– Better to overload << instead for this purpose though

Member vs. non-member ops
Recall that some functions are more naturally
defined as class members
– Specifically, any function that needs a this pointer:

e.g., ++, +=, … all need to change the object
– And there are four operators that can only be

overloaded as class members: =, (), [], and ->
Sometimes non-member functions better though
– e.g., binary functions, where the order of the

arguments doesn’t matter:
e.g., ==, <, …, and binary forms of +, -, *, /, %

– Also when must access other types – like << and >>
that require access to ostream and istream (cout, cin)

Overloading << and >>
Want to do: cout << cost << endl;
– Need: friend ostream& operator<<
(ostream& outs, const Money& amount);

...
ostream& operator<<(ostream& outs, const
Money& amount) {

// print to outs using << as usual (e.g., outs << cents;)
return outs; // must return the ostream reference

}

Want to do: cin >> price >> tax;
– Need: friend istream& operator>>
(istream& ins, Money& amount);

About member operator functions
First argument is this – but it’s hidden
– Always the left argument of binary operations
– So there can be no implicit conversion of left argument –

must be object of the correct type
– Is the only argument of unary operations

Often return *this to allow operation chaining
– e.g., imagine a Money += (compound assignment op)
Money& operator+= (const Money &right);...
Money& Money::operator+= (Money const &right) {

return *this = *this + right;
} // assuming operator= and operator+ are both already defined

Note: two versions of operator++ and operator--
And usually want two versions of operator[]

Three free member operators
By default, for any class C (even class C {};),
the compiler supplies three member operators
An assignment operator

C& operator=(const C &);

– Like a free copy ctor … makes a shallow copy
– So often necessary to redefine it to make a deep copy

And two different address-of operators
– One for mutable objects:

C* operator&();

– And one for constant objects:
const C* operator&() const;

– No good reason to redefine either of these functions!

Classes with dynamic memory

Must properly manage – to avoid memory leaks
– C++ does not have an automatic garbage collector –

so C++ programmers are responsible for returning
memory to the free store

Example class from text (Display 11.11): StringVar
...
private:

char *value; // pointer to dynamic array of characters
int max_length; //declared max length of array

– Point is to hold/manage a C-string of any length

Managing dynamic memory

Constructor (usually) allocates it
StringVar(const char a[]);
...
StringVar::StringVar(const char a[]) :

max_length(strlen(a)) {

value = new char[max_length + 1];

strcpy(value, a);

}

But what happens when the object is destroyed?
StringVar s1("hot"); // on stack, will go out of scope soon

Solution is to define a destructor (a.k.a. dtor)

Destructors - dtors
A dtor is invoked whenever an object goes out of
scope, or by delete for objects on free store
– Compiler supplies a default one if you don’t
– Default won’t free dynamic memory or other resources

Defined like a ctor, but with a ~ in front, and it
may not take any arguments
~StringVar();
...
StringVar::~StringVar() { delete [] value; }

Can invoke directly on an object (unlike ctors)
stringPtr->~StringVar(); // rarely done though

Manager functions (inc. Big 3)
4 functions every class must properly manage:
– Default ctor, copy ctor, dtor, and assignment operator

Compiler supplies defaults of all 4, but often should redefine
– Latter three also known as “The Big Three” – if you need to

redefine one of them, then you need to redefine all three of them
Copy ctor – StringVar(const StringVar&);
– Compiler-supplied version makes a “shallow copy”
– Invoked when initializing with object as argument:
StringVar s(otherString);

Or by “C-style” syntax: StringVar s = otherString;
– Also invoked to pass (or return) an object by value to

(or from) a function

Implementing StringVar copy ctor
Question: why not just keep the default copy ctor
for StringVar objects?
Ans: Need a complete, independent copy of the
argument – even if the argument is *this
– Therefore must create new dynamic array, and copy

all characters to the new array
StringVar::StringVar(const StringVar& other) :

max_length(other.length()) {
value = new char[max_length + 1];
strcpy(value, other.value);

}

See 11-11.cpp and 11-12.cpp (also in ~mikec/cs32/Savitch/Chapter11/)

Why redefine the = operator?

Given these declarations:
StringVar s1("cat"), s2("rabbit");

The following statement is legal:
s1 = s2;

But without redefining operator=, we would
have s1.value and s2.value both pointing to the
same memory location (a "shallow copy")

– Furthermore, s1’s old value is now a memory leak
So: StringVar& StringVar::operator=

(const StringVar& right);

Defining operator= [version 1]
The definition of = for StringVar could be as follows:

StringVar& StringVar::operator=
(const StringVar& right){

int new_length = strlen(right.value);
if ((new_length) > max_length)

new_length = max_length;

for(int i = 0; i < new_length; i++)
value[i] = right.value[i];

value[new_length] = '\0';
}

Notice anything wrong with this version?

Defining operator= [version 2]
StringVar& StringVar::operator=

(const StringVar& right){
delete[] value;
int new_length = strlen(right.value);
max_length = new_length;
value = new char[max_length + 1];

for(int i = 0; i < new_length; i++)
value[i] = right.value[i];

value[new_length] = '\0';
}

That solves problem of incompletely copied strings, but …
What if somebody uses it as follows? s1 = s1;

Defining operator= [finally?]
Idea is to delete value only if more space needed:

StringVar& StringVar::operator=
(const StringVar& right){

int new_length = strlen(right.value);
if (new_length > max_length) {

delete[] value;
max_length = new_length;
value = new char[max_length + 1];

}
for(int i = 0; i < new_length; i++)

value[i] = right.value[i];
value[new_length] = '\0';

}

