
Demos: advanced class design

~mikec/cs32/demos/IntArray/ files
– Mostly about dealing with objects pointing to

dynamic memory
~mikec/cs32/demos/String/ files
– Full-featured string-like class, with many

overloaded operators and other functions that
are not part of the textbook’s StringVar class

About building a program so
Linux (the OS) can run it

Starting to learn what gcc/g++ does
(learned how to use g++ in labs)

Based on Reading #5

Program building
Have: source code – human readable instructions
Need: machine language program – binary
instructions and associated data regions, ready to
be executed
g++/gcc does two basic steps: compile, then link
– To compile means translate to object code
– To link means to combine with other object code

(including library code) into an executable program

Compile Linkmypgm.cpp
(source code)

mypgm
(executable)

mypgm.o
(object code)

Link combines object codes
From multiple source files and/or libraries
– e.g., always libc.a

Use -c option with gcc/g++ to stop after creating .o file
-bash-4.1$ gcc -c mypgm.c ; ls mypgm*
mypgm.c mypgm.o

– Is necessary to compile a file without a main function
Later link it to libraries – alone or with other object files:

-bash-4.1$ gcc -o mypgm mypgm.o ; ls mypgm*
mypgm mypgm.c mypgm.o

Compile Link

Link

mypgm.c
(source code)

mypgm
(executable)

mypgm.o
(object code)

libc.a
(library file)

Compiling: 3 steps with C/C++

First the preprocessor runs
– Creates temporary source code with text substitutions as directed
– Use gcc -E (or just cpp) to run it alone – output goes to stdout

Then the source is actually compiled to assembly code
– Use gcc -S to stop at this step and save code in .s file

Last, assembler produces the object code (machine language)

"Compile"

Preprocess Assemble

Compile

mypgm.c
(source code)

mypgm.o
(object code)

(source code
with preproc.
subsitutions)

mypgm.s
(assembly

code)

Automate builds with make
(a short follow-up to lab04)

make is a Unix/gnu tool that executes actions as
necessary to satisfy dependencies
First create a "Makefile" (see Lab04 and hw4 for tips)

pgm: pgm.o # dependency
gcc pgm.o –o pgm # action (tab required)

pgm.o: pgm.c
gcc -c pgm.c

Why bother learning, and using the make tool?
– Some projects have many, many modules; even many

programmers. Automated, so guarantees complete and
up-to-date builds, without needless steps.

– Just type "make” – the program does the rest

Second Exam
Thursday, November 8

