
Demos: advanced class design

~mikec/cs32/demos/IntArray/ files
– Mostly about dealing with objects pointing to 

dynamic memory
~mikec/cs32/demos/String/ files
– Full-featured string-like class, with many 

overloaded operators and other functions that 
are not part of the textbook’s StringVar class

About building a program so 
Linux (the OS) can run it

Starting to learn what gcc/g++ does 
(learned how to use g++ in labs)

Based on Reading #5

Program building
Have: source code – human readable instructions
Need: machine language program – binary 
instructions and associated data regions, ready to 
be executed
g++/gcc does two basic steps: compile, then link
– To compile means translate to object code
– To link  means to combine with other object code 

(including library code) into an executable program

Compile Linkmypgm.cpp
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Link combines object codes
From multiple source files and/or libraries
– e.g., always libc.a

Use -c option with gcc/g++ to stop after creating .o file
-bash-4.1$ gcc -c mypgm.c ; ls mypgm*
mypgm.c mypgm.o

– Is necessary to compile a file without a main function
Later link it to libraries – alone or with other object files:

-bash-4.1$ gcc -o mypgm mypgm.o ; ls mypgm*
mypgm mypgm.c mypgm.o
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Compiling: 3 steps with C/C++

First the preprocessor runs
– Creates temporary source code with text substitutions as directed
– Use gcc -E (or just cpp) to run it alone – output goes to stdout

Then the source is actually compiled to assembly code
– Use gcc -S to stop at this step and save code in .s file

Last, assembler produces the object code (machine language)

"Compile"

Preprocess Assemble

Compile

mypgm.c
(source code)

mypgm.o
(object code)
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Automate builds with make
(a short follow-up to lab04)

make is a Unix/gnu tool that executes actions as 
necessary to satisfy dependencies
First create a "Makefile" (see Lab04 and hw4 for tips)

pgm: pgm.o # dependency
gcc pgm.o –o pgm # action (tab required)

pgm.o: pgm.c
gcc -c pgm.c

Why bother learning, and using the make tool?
– Some projects have many, many modules; even many 

programmers. Automated, so guarantees complete and 
up-to-date builds, without needless steps.

– Just type "make” – the program does the rest
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