Demos: advanced class design

e ~Mmikec/cs32/demos/IntArray/ files

— Mostly about dealing with objects pointing to
dynamic memory

e ~mikec/cs32/demos/String/ files

— Full-featured string-like class, with many
overloaded operators and other functions that
are not part of the textbook’s StringVar class




About building a program so
Linux (the OS) can run it

Starting to learn what gcc/g++ does
(learned how to use g++ in labs)

Based on Reading #5




Program building

e Have: source code — human readable instructions

e Need: machine language program — binary
Instructions and associated data regions, ready to
be executed

e g++/gcc does two basic steps: compile, then link
— To compile means translate to object code

— To link means to combine with other object code
(including library code) into an executable program

mypgm.cpp Compile mypgm.o i mypgm
(source code) (object code) (executable)




Link combines object codes

e From multiple source files and/or libraries

— e.g., always libc.a
mypgm.c Compile mypgm.o mypgm
(source code) (object code) (executable)
libc.a Link
(library file)

e Use -c option with gcc/g++ to stop after creating .o file
-bash-4.1% gcc -c mypgm.c ; Is mypgm*
mypgm.c mypgm.o
— Is necessary to compile a file without a main function
e Later link it to libraries — alone or with other object files:
-bash-4.1% gcc -o mypgm mypgm.o ; Is mypgm*
mypgm mypgm.C mypgm.o




Compiling: 3 steps with C/C++

mypgm.c “Compile* mypgm.o

(source code) (object code)

Preprocess (source code mypgm.s Assemble
with preproc. (assembly

subsitutions) Compile code)

e First the preprocessor runs

— Creates temporary source code with text substitutions as directed
— Use gcc -E (or just cpp) to run it alone — output goes to stdout

e Then the source iIs actually compiled to assembly code
— Use gcc -S to stop at this step and save code in .s file

e Last, assembler produces the object code (machine language)




Automate builds with make
(a short follow-up to lab04)

e make is a Unix/g u tool th(?t executes actions as
necessary to sat s?y dependencies

e First create a "Makefile" (see Lab04 and hw4 for tips)
pgm: pgm.o # dependency

gcc pgm.o —0 pgm # action (tab required)

pgm.o: pgm.c
gcc -C pgm.c

e \Why bother learning, and using the make tool?

— Some projects have many, many modules; even many
programmers. Automated, so guarantees complete and
up-to-date builds, without needless steps.

— Just type "make” — the program does the rest




Second Exam

Thursday, November 8




