
Simpler polymorphism demo Simpler polymorphism demo 
((~mikec/cs32/demos/figures~mikec/cs32/demos/figures))

Base: Figure has virtual void print()
– print() is used in printAt(lines)

Derived: Rectangle just overrides print()
Which print() is used in the following code?
Figure *ptr = new Rectangle,

&ref = *new Rectangle('Q', 5, 10, 4);
ptr->printAt(1); ref.printAt(1);

What if print() was not declared virtual?
What if line 2 above just had ref, not &ref?
– To know why, see “slicing” … a few slides from now 



““Pure virtualPure virtual”” and abstract classesand abstract classes

Actually class Figure’s print() function is useless
– It should have been a pure virtual function:
virtual void draw() const = 0;

– Says not defined in this class – means any derived 
class must define its own version, or be abstract itself

A class with one or more pure virtual functions is 
an abstract class – so it can only be a base class
– An actual instance would be an incomplete object
– So any instance must be a derived class instance



TypesTypes when inheritance is involvedwhen inheritance is involved

Consider: void func (Sale &x) {…} or 
similarly: void func (Sale *xp) {…}
– What type of object is x  (or *xp), really? Is it a Sale?
– Or is it a DiscountSale, or even a CrazyDiscountSale?

Just Sale members are available
– But might be virtual, and Sale might even be abstract
– & and * variables allow polymorphism to occur

Contrast: void func (Sale y) {…}
– What type of object is y? It’s a Sale. Period. 
– Derived parts are “sliced” off by Sale’s copy ctor
– Also in this case, Sale cannot be an abstract class



Type compatibility exampleType compatibility example
Consider:
Dog d; Pet p;
d.name = "Tiny";
d.breed = "Mutt";
p = d; // “slicing” here
– All okay – a Dog “is a” Pet

Reverse is not okay
– A Pet might be a Bird, or …

And p.breed? Nonsense!
Also see slicing.cpp at 
~mikec/cs32/demos/

class Pet {
public: // pls excuse bad info hiding

string name;
virtual void print();

};

class Dog : public Pet {
public:

string breed;
virtual void print();

};



Destructors should be virtualDestructors should be virtual

Especially if class has virtual functions
Derived classes might allocate resources 
via a base class reference or pointer:
Base *ptrBase = new Derived;

... // a redefined function allocates resources
delete ptrBase;

If dtor not virtual, derived dtor is not run!
If dtor is virtual – okay: run derived dtor, 
immediately followed by base dtor



Casting and inherited typesCasting and inherited types
Consider again: Dog d; Pet p;
“Upcasting” (descendent to ancestor) is legal:
p = d; // implicitly casting “up”
p = static_cast<Pet>(d); // like (Pet)d
– But objects sliced if not pointer or reference

Other way (“downcasting”) is a different story:
d = static_cast<Dog>(p); // ILLEGAL
– Can only do by pointer and dynamic cast :
Pet *pptr = new Dog; // we know it’s a Dog
Dog *dptr = dynamic_cast<Dog*>(pptr)
– But can be dangerous, and is rarely done



Multiple inheritance and virtualMultiple inheritance and virtual
Idea: a ClockRadio is a Radio and an AlarmClock
– But what if class Radio and class AlarmClock are both derived 

from another class, say Appliance?
– Doesn’t each derived object contain an Appliance portion?
– So wouldn’t a Clockradio have two copies of that portion, and 

how can such a scheme possibly work properly?
Answer: it can work, but only by using virtual inheritance!
class Radio : virtual public Appliance;
class AlarmClock : virtual public Appliance;
class ClockRadio : public Radio, public AlarmClock;

– Now a Clockradio has just one Appliance portion, not two
See demo code in ~mikec/cs32/demos/multi-inherit
But note: hierarchy is still messed up, and still lots of 
chances for ambiguity – best to avoid multi-inheritance!



How do virtual functions work?How do virtual functions work?
Not exactly magic, but safe to consider it so
virtual tells compiler to “wait for instructions”
until the function is used in a program
So the compiler creates a virtual function table
for the class, with pointers to all virtual functions
In turn, every object of such a class will be made 
to store a pointer to its own class’s virtual 
function table
At runtime: follow the pointers to find the code!


