Memory and C/C++ modules
From Reading #6

Will return to OOP topics
(templates and library tools) soon

Compilation/linking revisited

compilation <> - (rel

file M

Usually performed by gcc/g++ in one uninterrupted sequence

Layout of C/C++ programs

Source code

é Header section
Machine code section
. becomes (a.k.a. text section)
Initialized data section
Object Symbol table section
mOdu Ie 9 Relocation information
section

A sample C program — demo.c

#include <stdio.h> o Has text SECtiOﬂ
int a[10]={0,1,2.3.4,5,6,7.8,9}: of course: the
int b[10]; machine code
o e Has initialized
void main(O{ global data: a

int i;
static int k = 3;

for(i = 0; i < 10; i++) {
printfC'%d\n",alil);
b[i] = k*a[i];

3

Uninitialized
global data: b
Static data: k

Has a local

¥ variable: 1

A possible structure of demo.o

Offset__Contents Comment
Header section

0 124 number of bytes of Machine code section
4 44 number of bytes of initialized data section

8 40 number of bytes of Uninitalized data section (array b[1)
(not part of this object module)

12 60 number of bytes of Symbol table section

16 44 number of bytes of Relocation information section

Machine code section (124 byles)
20 X code for the top of the Tor loop (36 bytes)
)

56 X code for call o printf() (22 byles
68 X code for the assignment stalement (10 bytes)

88 X code for the bottom of the for loop (4 bytes)

%2 X code for exiting nain() (52 bytes) H

Tnitialized data section (44 bytes) ObJeCt module
a4 0 beginning of aray a[] . .

s 1 contains neither
76 8 initiali

Y wscteman o uninitialized
1843 variable k (4 bytes)

SymboT able section (@0 0yes) data (b), nor

8 X array a[] - offset 0 in Inialized data section (12 bytes)

200 X variable k : offset 40 in Initialized data section (10 bytes) any |OCa|

210 X array b[J - offset0in Uniniialized data section (12 bytes) . _

2 X main : offset 0 in Machine codo secton (12 byes) variables (i)

34 X rintf : extenal, used at offset 56 of Machine code section (14 bytes)
Relocation information section (44 bytes)
248 X relocation information

Linux object file format

e “ELF” - stands for Executable and
Linking Format
— A 4-byte magic number followed by a series
of named sections
e Addresses assume the object file is
placed at memory address 0
— When multiple object files are linked
together, we must update the offsets
(relocation)
e Tools to read contents: objdump and
readelf - not available on all systems

\177ELF
.text

:.r.odata
:.c;ata
:.b.ss
:;ymtab
:.r.el.text
:;el.data
:.c;ebug
line

Section
header table

ELF sections

e .text = machine code (compiled program
instructions)

e _rodata = read-only data

e _data = initialized global variables

e .bss = “block storage start” for
uninitialized global variables — actually
just a placeholder that occupies no space
in the object file

e .symtab = symbol table with information
about functions and global variables
defined and referenced in the program

\177ELF
text

:;odata
:;ata
:.t.)ss
:;ymtab
:;el,text
:;el.data
debug
line

Section
header table

ELF Sections (cont.)

o _rel.text = list of locations in .text section
that need to be modified when linked
with other object files

e .rel.data = relocation information for
global variables referenced but not
defined

e .debug = debugging symbol table; only
created if compiled with -g option

e .line = mapping between line numbers in
source and machine code in .text; used
by debugger programs

\177ELF
.text

:.r.odata
.;ata
:.l;ss
:;ymtab
:;el.text
:.r.el.data
:;ebug
..\ine
;ect\'un
header table

Creation of a load module

Obfct Modlo A o trosse o Interleaved from
Hoader Socion multiple object
Vachine Gods Hoader Socion modules

Sedion .

ized - §ectlons must be
e relocated .

Sacin Maghine Co e Addresses relative to
beginning of a
module

Header Seciion — Necessary to translate
Machine Code e from beginnings of
Initialized data ObJeCl mOdUIeS

Secton

Sy e e When loaded - OS
Secten Symbl e will translate again to
- Sectn absolute addresses
ject Moie 8

Loading and memory mapping

Header Section | 7T cose <>
VocneGoe |
. talzed
Tlzed data
S| - | staic sata

unintaized

foga
Cote o]
o]

program 2

Dynamc data
Unused
logial
dress
(logcal) agcress space.
space of

program 1

loading | operATING gl orss
SYSTEM o0
memory M egans

mapping memory
PHYSICALWEMORY mapping

e Includes
memory
for stack,
dynamic
data (i.e.,
free store),
and un-
initialized
global data

e Physical
memory is
shared by
multiple
programs

From source
program to oo
“placement” in ;:{;13{:‘0‘“‘56’“‘

void main()

memory during ... T

execution

Jrendfor
Jrend main/

physical memory

code for printfQ)

ode for top of For loop

code for call to printf()
codefor b[i] = k*ali]

anayar]

anayb]
variable k

Dynamic memory allocati

on

INVAAI)

AW

ogical) adcress (logical adcress
space o he aco o h
program
OPERATING OPERATI
SYSTEM

YSTEM

ING

PHYSICAL MEMORY PHYSICAL MEMORY
Before dynamic memory allocation After dynamic memory allocation

Sections of an executable file

. ., Memary
_ _ _Executable Object File o Segments: e Imvislble ta
ELF header PRRPPSPPPY s ———— L
User stack.
Frogram heeder table {created at runtime] vosp
[required for sxscutables) presd
Init section t pointer]
hext section " y for
== shared ibraries
- =) FIPTIETET S I S
data section
VA B saction - Brk
Run-tine heap
o L]
o [created by malloc)
debug —_—
Read/write segment Loaded
— Idata, bas) from
strab b
Read-anly segment enecutable
Saction header table [.init, text, .codata) || file
awamabang ——————— (L __
{required for relocatables)]

Variables and objects in memory

A 16916
0100000] [0100001d0001010q

e Variables and data objects are data containers
with names

e The value of the variable is the code stored in the
container

e To evaluate a variable is to fetch the code from
the container and interpret it properly

e To store a value in a variable is to code the value
and store the code in the container

e The size of a variable is the size of its container

Overflow is when a data code is

larger than the size of its container

e .4, char i; //justlbyte e
int *p = (int*)&i; /i Iegal [01001007100101100000001011010100
*p = 1673579060;
Il result if "big endian" storage: X
e If whole space (X) belongs to this program:
— Seems OK if X does not contain important data for rest of
the program’s execution
— Bad results or crash if important data are overwritten
e Ifall or part of X belongs to another process, the
program is terminated by the OS for a memory
access violation (i.e., segmentation fault)

More about overflow

e Previous slide showed example of "right
overflow" — result truncated (also warning)

0100000J010001 ...

e Compilers handle "left overflow" by
truncating too (usually without any warning)
— Easily happens: unsigned char i = 255;
11111111

i++; // What is the result of this increment?
1oooooood

Placement & padding — word

e Compiler places \ aabe : i
data at word : ") Not like st

boundaries 010010011001011f 0’ 001101101
- e.g., word =4 byt&%

e Imagine:
Struct { dala‘e“ variable x
o ek Compilers do it this wa
char a; =~ peding P - Y
int b; [o1001001F J100101 101010001101101]
T x;

~
amachine word amachine word

e Classes too
See/try ~mikec/cs32/demos/padding*.c*

Pointers are data containers too

e Asitsvalueisa _memc_)r¥
address, we say it "points"

toa place In memory [ewowe] []
e |t points at just 1 byte, so it byt withacdoss
must "know" what data type
starts at that address
— How many bytes? o
— How to interpret the bits? EE| [TTT1T
—

e Question: What is stored in
the 4 bytes at addresses

802340..802343 inthe —m
diagram at right? A S o
— Continued next slide

. ...0101‘01 000001010000100100001 101000100‘1 100... r)
Whatis ——

address addiess address address
802340 802341 802342 802343

e Could be four chars: ‘A’,

——
‘B’,‘C’,'D’
» G

charb ASCH code for A

e Or it could be two shorts:
16961, 17475
— All numerical values shown here
are for a "little endian" machine =~ Cjsters
(more about endian next slide)
e Maybe it's a long or an
int: 1145258561

e It could be a floating point
number too: 781.035217

binay cade for short 16916
(on altle endian machine)

Beware: two different byte orders

e Matters to actual value of anything but chars
e Say: short int x = 1;
e On a big endian machine it looks like this:
\ 0000000d00000001 \
— Some Macs, JVM, TCP/IP "Network Byte Order"
e On a little endian machine it looks like this:
\ /0000000100000004 \
— Intel, most communication hardware
e Only important when dereferencing pointers
— Seel/try ~mikec/cs32/demos/endian.c

Dynamic memory allocation
e OS memory manager (OSMM) allocates large

blocks at a time to individual processes
e A process memory manager (PMM) then takes over

Operating System
large memory 0S memory large memory
blocks manager blocks
Process memory
management

Process memory
management
Process

2

Memory management by OSMM

e Essentially, a simple "accounting” of what process
owns what part(s) of the memory

e Memory allocation — like making an entry in the
accounting "book" that this segment is given to
this process for keeps

e Memory deallocation — an entry that this segment
is no longer needed, so it’s "free"

e OSMM usually keeps track of allocated memory
blocks in a binary heap, to quickly search for
suitable free blocks — hence the name "system
heap" (traditionally called "free store" in C++)

PMM handles a process’s memory

e A "middle manager" — intermediary to OSMM

e Usually keeps a dynamic list of free segments

e When program requests more memory — PMM
searches its list for a suitable segment

o If none found, asks OSMM for another block
— OSMM searches its heap and delivers a block
— Then PMM carves out a suitable segment

e Can be a significant time delay while all this
goes on —which can slow performance if a
program makes many allocation requests

Dynamic memory in C programs

e Use C standard functions — all in <stdlib.h>

— All use void* — means "any type" — no dereferencing
void *malloc(size_t size);

— Get at least size bytes; contents are arbitrary!
void *calloc(size_t n, size_t elsize);

— Get at least n*elsize bytes; contents cleared!
void *realloc(void *ptr, size_t size);

— Changes size of existing segment (at ptr)
— IMPORTANT: ptr must have come by malloc or calloc
— And beware dangling pointers if data must be moved

e To deallocate, use void free(void *ptr);

Easier, better in C++ programs

e Allocate memory by operator new
— Easier than malloc and other C functions: just
need to specify type — object’s size is known
— Better than the C functions: also calls a
constructor to create the object properly

e Operator delete returns memory to the
free store that was allocated by new

— Also calls class destructor to keep things neat
— Use delete[] if deallocating an array

Dynamic arrays of C++ objects

e MyClass *array = new MyClass[5];
— Creates an array of 5 MyClass objects
—Returns a pointer to the first object

e Default ctor is called for every object

e No way to call a different constructor
—So class must have a no-argument ctor

o delete [] array; i ~mikec/cs32/demos/
— Calls dtor on all 5 objects | dynarray.cpp

Using memory all over the place!

e Fairly simple in C: an
object is either in
static memory, or on (about program on Reader p. 190)
stack, or on heap

e C++ objects can "be"
more than one place!

e So important in C++ i ane manic mem y
to manage memory e
even for stack objects
(with dynamic parts)

Don’t corrupt the PMM: guidelines

o Never pass an address to free that was not
returned by malloc, calloc, or realloc

e Deallocate segments allocated by mal loc,
calloc, or realloc only by using free

o Never pass address to delete (or delete[])
that was not previously returned by new

e Deallocate segments allocated by new
using exclusively delete

— And exclusively delete[] if array allocated

‘ BTW: in general, don’t mix C and C++ ways to do things. ‘

Implementing generic types

With C++ templates

Starting Savitch Chapter 17

C++ templates

o Like “blueprints” for the compiler to use in
creating class and function definitions
e Always involve one or more parameterized types
— e.g., function template to compare object sizes:
template <typename T1, typename T2>
int sizeComp(T1l const &ol, T2 const &o02)
{ return (sizeof ol - sizeof 02); }
- e.g., class template for a list that holds any type:
template <typename DataType>
class List { /*here refer to DataType objects */ };
e Can use either keyword typename or class in a
template prefix” = e.g., template <class T>

Function templates

e An alternative to function overloading
— But code for concrete types created only as needed
o And the programmer does not have to write it!
— Compiler deduces types if user doesn’t specify:
int x = sizeComp(a’, 7);
/I compiler uses template to create sizeComp(char, int)
— To specify: x = sizeComp<int, int>(a’, 7.5);
Il compiler uses template to create sizeComp(int, int)
e Better choice than macros too
— Strictly type-checked, and no nasty side effects
e See ~mikec/cs32/demos/templates/greater.cpp

More function template issues

e Template definition must be in header file — so
compiler can know how to define the functions
— i.e., cannot be defined in a separate _cpp file
e Sometimes specialized for particular types
— Tells compiler to use specialized version instead of
creating a new definition — e.g. greater for char*:
template <> //<>does not show a type parameter
char * &greater<char *>(char *s, char *t)
{ /* would use strcmp to compare s and t, instead of operator< */ }
e Empty parameter types — exact types everywhere else
— No type conversions though (must be exact match), so
usually better to just overload instead of specialize

Defining class templates

e Idea: “generalize” data that can be managed by a class

template<typename T>
class Pair {
public:
PairQ);
Pair(T firstval, T secondval);
void setFirst(T newval);
void setSecond(T newval);
T getFirst() const;
T getSecond() const;
private:
T first; T second;

¥

Class template member functions

o All methods need template prefix — e.g., constructor:
template<class T>

Pair<T>::Pair(T vall, T val2)

: first(vall), second(val2) { } |NOte:each
o Similarly setter and getter functions: function
template<class T> Fie_flnltlon
void Pair<T>::setFirst(T newval) is itself a
{ first = newal; } template

template<class T>
T Pair<T>::getFirst() const { return first; }
e See ~mikec/cs32/demos/templates/complex example

More class template notes

e Mostly design just like any class
— Can have friends — usually do
— Can be a base class or a derived class
e Careful thOUth MyTemplate<T1> # MyTemplate<T2>
— That is, there is no inheritance or any other kind of
formal relationship between the two classes
e e.g., cannot cast an object of one to an object of the other
- Why?
o Compiler defines completely different classes!

Class templates in OO design

e An alternative to using an inheritance hierarchy
— More flexible, as template classes stand alone
— More efficient than using virtual functions

e Both are ways to have objects with independent
behaviors, but all sharing’a common interface

e The STL is mostly template classes and functions
— Ditto the Java Collections Framework by the way

e Even a string is actually a specialization of a
template, defined as follows in namespace std:
— typedef basic_string<char> string;
— Also: typedef basic_string<wchar_t> wstring;

Starting Savitch Chapter 18

std: :string

e Encapsulates a sequence of characters

— i.e., much more object-oriented than (char *)
e Both a size and a capacity (for efficiency)

— Both are mutable, and so are the characters
e Member operator functions =, +=, []
e Others include substr, insert, compare, clear, ...
o Nonmember: op<<, op>>, getline, op+, op==, ...
e See http://www.cplusplus.com/reference/string/ and

librarytools.cpp::stringDemo() in
~mikec/cs32/demos/templates/

