
Memory and C/C++ modulesMemory and C/C++ modules
From Reading #6

Will return to OOP topics
(templates and library tools) soon

Compilation/linking revisitedCompilation/linking revisited
source
file 1

source
file 2

source
file N

object
file 1

object
file 2

object
file N

library
object
file 1

library
object
file M

load
file

linking
(relocation +

linking)
compilation

Usually performed by gcc/g++ in one uninterrupted sequence

Layout of C/C++ programsLayout of C/C++ programs

Source code

… becomes

Object
module

object 1 definition
object 2 definiton

object 4 definition

object 3 definition

...
...

...
...

static object 5 definition

function 1

function 2

static object 5 definition

function 3

Header section

Machine code section
(a.k.a. text section)

Initialized data section

Symbol table section

Relocation information
section

A sample C program A sample C program –– demo.cdemo.c
Has text section
of course: the
machine code
Has initialized
global data: a
Uninitialized
global data: b
Static data: k
Has a local
variable: i

#include <stdio.h>

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main(){
int i;
static int k = 3;

for(i = 0; i < 10; i++) {
printf("%d\n",a[i]);
b[i] = k*a[i];
}

}

A possible structure of demo.oA possible structure of demo.o
Offset Contents Comment
Header section
0 124 number of bytes of Machine code section
4 44 number of bytes of initialized data section
8 40 number of bytes of Uninitialized data section (array b[])

(not part of this object module)
12 60 number of bytes of Symbol table section
16 44 number of bytes of Relocation information section
Machine code section (124 bytes)
20 X code for the top of the for loop (36 bytes)
56 X code for call to printf() (22 bytes)
68 X code for the assignment statement (10 bytes)
88 X code for the bottom of the for loop (4 bytes)
92 X code for exiting main() (52 bytes)
Initialized data section (44 bytes)
144 0 beginning of array a[]
148 1
:
176 8
180 9 end of array a[] (40 bytes)
184 3 variable k (4 bytes)
Symbol table section (60 bytes)
188 X array a[] : offset 0 in Initialized data section (12 bytes)
200 X variable k : offset 40 in Initialized data section (10 bytes)
210 X array b[] : offset 0 in Uninitialized data section (12 bytes)
222 X main : offset 0 in Machine code section (12 bytes)
234 X printf : external, used at offset 56 of Machine code section (14 bytes)
Relocation information section (44 bytes)
248 X relocation information

Object module
contains neither
uninitialized
data (b), nor
any local
variables (i)

Linux object file formatLinux object file format
“ELF” – stands for Executable and
Linking Format
– A 4-byte magic number followed by a series

of named sections
Addresses assume the object file is
placed at memory address 0
– When multiple object files are linked

together, we must update the offsets
(relocation)

Tools to read contents: objdump and
readelf – not available on all systems

\177ELF
.text
…
.rodata
…
.data
…
.bss
…
.symtab
…
.rel.text
…
.rel.data
…
.debug
…
.line
…
Section
header table

ELF sectionsELF sections
.text = machine code (compiled program
instructions)
.rodata = read-only data
.data = initialized global variables
.bss = “block storage start” for
uninitialized global variables – actually
just a placeholder that occupies no space
in the object file
.symtab = symbol table with information
about functions and global variables
defined and referenced in the program

\177ELF
.text
…
.rodata
…
.data
…
.bss
…
.symtab
…
.rel.text
…
.rel.data
…
.debug
…
.line
…
Section
header table

ELF Sections (cont.)ELF Sections (cont.)
.rel.text = list of locations in .text section
that need to be modified when linked
with other object files
.rel.data = relocation information for
global variables referenced but not
defined
.debug = debugging symbol table; only
created if compiled with -g option
.line = mapping between line numbers in
source and machine code in .text; used
by debugger programs

\177ELF
.text
…
.rodata
…
.data
…
.bss
…
.symtab
…
.rel.text
…
.rel.data
…
.debug
…
.line
…
Section
header table

Creation of a load moduleCreation of a load module

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Object Module A

Object Module B

Load Module Interleaved from
multiple object
modules
– Sections must be

“relocated”
Addresses relative to
beginning of a
module
– Necessary to translate

from beginnings of
object modules

When loaded – OS
will translate again to
absolute addresses

Loading and memory mappingLoading and memory mapping

(logical) address
space of

program 1

(logical)
address
space of

program 2

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

load module

Stack

Code

Static data

Dynamic data

(logical) address
space of

program 3

Stack

Unused
Logical
address
space

loading
memory
mapping

PHYSICAL MEMORY

OPERATING
SYSTEM

memory
mapping

Code

Static data

Dynamic data

Unused
logical

address
space

Stack

Includes
memory
for stack,
dynamic
data (i.e.,
free store),
and un-
initialized
global data
Physical
memory is
shared by
multiple
programs

From source From source
program to program to
““placementplacement”” inin
memory duringmemory during
executionexecution

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main()
{
 int i;
 static int k = 3;

 for(i = 0; i < 10; i++) {
 printf("%d\n",a[i]);
 b[i] = k*a[i];
 }/*endfor*/
}/*end main*/

array a[]

array b[]
variable k

code for top of for loop

code for call to printf()
code for b[i] = k*a[i]

code for printf()

physical memory

source program

Dynamic memory allocationDynamic memory allocation

PHYSICAL MEMORY

Before dynamic memory allocation

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

(logical) address
space of the

program
OPERATING

SYSTEM

Stack

PHYSICAL MEMORY

After dynamic memory allocation

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

(logical) address
space of the

program
OPERATING

SYSTEM

Stack

increment of
dynamic data

Sections of an executable fileSections of an executable file
Segments:

Variables and objects in memoryVariables and objects in memory

Variables and data objects are data containers
with names
The value of the variable is the code stored in the
container
To evaluate a variable is to fetch the code from
the container and interpret it properly
To store a value in a variable is to code the value
and store the code in the container
The size of a variable is the size of its container

01000001 0100001000010100
'A' 16916

Overflow is when a data code is Overflow is when a data code is
larger than the size of its containerlarger than the size of its container

e.g., char i; // just 1 byte
int *p = (int*)&i; // legal
*p = 1673579060;

// result if "big endian" storage:
If whole space (X) belongs to this program:
– Seems OK if X does not contain important data for rest of

the program’s execution
– Bad results or crash if important data are overwritten

If all or part of X belongs to another process, the
program is terminated by the OS for a memory
access violation (i.e., segmentation fault)

variable i

01001001100101100000001011010100

X

More about overflowMore about overflow
Previous slide showed example of "right
overflow" – result truncated (also warning)

Compilers handle "left overflow" by
truncating too (usually without any warning)
– Easily happens: unsigned char i = 255;

i++; // What is the result of this increment?

010001…01000001

11111111

000000001

Placement & padding Placement & padding –– wordword
Compiler places
data at word
boundaries
– e.g., word = 4 bytes

Imagine:
struct {

char a;
int b;

} x;

Classes too

variable x

x.a x.b

01001001 10010110000000101101010001101101

a machine word a machine word

data
completely
ignored, junk
padding

Compilers do it this way

variable x

0100100110010110000000101101010001101101

x.a x.b

a machine worda machine word

Not like this!

See/try ~mikec/cs32/demos/padding*.c*

Pointers are data containers tooPointers are data containers too

As its value is a memory
address, we say it "points"
to a place in memory
It points at just 1 byte, so it
must "know" what data type
starts at that address
– How many bytes?
– How to interpret the bits?

Question: What is stored in
the 4 bytes at addresses
802340..802343 in the
diagram at right?
– Continued next slide

8090346

byte with address
8090346

8090346

byte with address
8090346

int* p
integer

"data container"

01000001010000100100001101000100...0101 1100...

address
802340

address
802343

address
802342

address
802341

What is ? What is ?

Could be four chars: ‘A’,
‘B’, ‘C’, ‘D’
Or it could be two shorts:
16961, 17475
– All numerical values shown here

are for a "little endian" machine
(more about endian next slide)

Maybe it’s a long or an
int: 1145258561
It could be a floating point
number too: 781.035217

...0101 1100...

address
802340

802340 char* b ASCII code for 'A'

01000001010000100100001101000100

...0101 1100...

address
802340

802340 short* s binary code for short 16916
(on a little endian machine)

01000001010000100100001101000100

...0101 1100...

address
802340

802340 int* p binary code for int 1145258561
(on a little endian machine)

01000001010000100100001101000100

...0101 1100...

address
802340

802340 float* f binary code for float 781.035217
(on a little endian machine)

01000001010000100100001101000100

01000001010000100100001101000100...0101 1100...

address
802340

address
802343

address
802342

address
802341

Beware: two different byte ordersBeware: two different byte orders
Matters to actual value of anything but chars
Say: short int x = 1;
On a big endian machine it looks like this:

– Some Macs, JVM, TCP/IP "Network Byte Order"
On a little endian machine it looks like this:

– Intel, most communication hardware
Only important when dereferencing pointers
– See/try ~mikec/cs32/demos/endian.c

0000000000000001

0000000100000000

Dynamic memory allocationDynamic memory allocation
OS memory manager (OSMM) allocates large
blocks at a time to individual processes
A process memory manager (PMM) then takes over

Operating System

Process memory
management

Process memory
management

Process
1

Process
2

OS memory
manager

large memory
blocks

large memory
blocks

Memory management by OSMMMemory management by OSMM
Essentially, a simple "accounting" of what process
owns what part(s) of the memory
Memory allocation – like making an entry in the
accounting "book" that this segment is given to
this process for keeps
Memory deallocation – an entry that this segment
is no longer needed, so it’s "free"
OSMM usually keeps track of allocated memory
blocks in a binary heap, to quickly search for
suitable free blocks – hence the name "system
heap" (traditionally called "free store" in C++)

PMM handles a processPMM handles a process’’s memorys memory
A "middle manager" – intermediary to OSMM
Usually keeps a dynamic list of free segments
When program requests more memory – PMM
searches its list for a suitable segment
If none found, asks OSMM for another block
– OSMM searches its heap and delivers a block
– Then PMM carves out a suitable segment

Can be a significant time delay while all this
goes on – which can slow performance if a
program makes many allocation requests

Dynamic memory in C programsDynamic memory in C programs

Use C standard functions – all in <stdlib.h>
– All use void* – means "any type" – no dereferencing

void *malloc(size_t size);

– Get at least size bytes; contents are arbitrary!
void *calloc(size_t n, size_t elsize);

– Get at least n*elsize bytes; contents cleared!
void *realloc(void *ptr, size_t size);

– Changes size of existing segment (at ptr)
– IMPORTANT: ptr must have come by malloc or calloc
– And beware dangling pointers if data must be moved

To deallocate, use void free(void *ptr);

Easier, better in C++ programsEasier, better in C++ programs

Allocate memory by operator new
– Easier than malloc and other C functions: just

need to specify type – object’s size is known
– Better than the C functions: also calls a

constructor to create the object properly
Operator delete returns memory to the
free store that was allocated by new
– Also calls class destructor to keep things neat
– Use delete[] if deallocating an array

Dynamic arrays of C++ objectsDynamic arrays of C++ objects
MyClass *array = new MyClass[5];

– Creates an array of 5 MyClass objects
– Returns a pointer to the first object

Default ctor is called for every object
No way to call a different constructor
– So class must have a no-argument ctor
delete [] array;

– Calls dtor on all 5 objects
~mikec/cs32/demos/
dynarray.cpp

Using memory all over the place!Using memory all over the place!

Fairly simple in C: an
object is either in
static memory, or on
stack, or on heap
C++ objects can "be"
more than one place!
So important in C++
to manage memory
even for stack objects
(with dynamic parts)

activation frame
of doit()

sample

salutation

dynamic memory
(heap)

h e y '\0'

static memory

sample

salutation

dynamic memory
(heap)

h e y '\0'

(about program on Reader p. 190)

DonDon’’t corrupt the PMM: guidelinest corrupt the PMM: guidelines
Never pass an address to free that was not
returned by malloc, calloc, or realloc
Deallocate segments allocated by malloc,
calloc, or realloc only by using free
Never pass address to delete (or delete[])
that was not previously returned by new
Deallocate segments allocated by new
using exclusively delete
– And exclusively delete[] if array allocated

BTW: in general, don’t mix C and C++ ways to do things.

Implementing generic typesImplementing generic types

Starting Savitch Chapter 17

With C++ templates

C++ templatesC++ templates
Like “blueprints” for the compiler to use in
creating class and function definitions
Always involve one or more parameterized types
– e.g., function template to compare object sizes:
template <typename T1, typename T2>
int sizeComp(T1 const &o1, T2 const &o2)
{ return (sizeof o1 – sizeof o2); }

– e.g., class template for a list that holds any type:
template <typename DataType>
class List { /* here refer to DataType objects */ };

Can use either keyword typename or class in a
“template prefix” – e.g., template <class T>

Function templatesFunction templates
An alternative to function overloading
– But code for concrete types created only as needed

And the programmer does not have to write it!
– Compiler deduces types if user doesn’t specify:

int x = sizeComp(‘a’, 7);
// compiler uses template to create sizeComp(char, int)

– To specify: x = sizeComp<int, int>(‘a’, 7.5);
// compiler uses template to create sizeComp(int, int)

Better choice than macros too
– Strictly type-checked, and no nasty side effects

See ~mikec/cs32/demos/templates/greater.cpp

More function template issuesMore function template issues
Template definition must be in header file – so
compiler can know how to define the functions
– i.e., cannot be defined in a separate .cpp file

Sometimes specialized for particular types
– Tells compiler to use specialized version instead of

creating a new definition – e.g. greater for char*:
template <> // <> does not show a type parameter
char * &greater<char *>(char *s, char *t)
{ /* would use strcmp to compare s and t, instead of operator< */ }

Empty parameter types – exact types everywhere else
– No type conversions though (must be exact match), so

usually better to just overload instead of specialize

Defining class templatesDefining class templates
Idea: “generalize” data that can be managed by a class
template<typename T>
class Pair {
public:

Pair();
Pair(T firstVal, T secondVal);
void setFirst(T newVal);
void setSecond(T newVal);
T getFirst() const;
T getSecond() const;

private:
T first; T second;

};

Class template member functionsClass template member functions

All methods need template prefix – e.g., constructor:
template<class T>
Pair<T>::Pair(T val1, T val2)

: first(val1), second(val2) { }

Similarly setter and getter functions:
template<class T>
void Pair<T>::setFirst(T newVal)
{ first = newVal; }
template<class T>
T Pair<T>::getFirst() const { return first; }

See ~mikec/cs32/demos/templates/complex example

Note: each
function
definition
is itself a
template

More class template notesMore class template notes

Mostly design just like any class
– Can have friends – usually do
– Can be a base class or a derived class

Careful though: MyTemplate<T1> ≠ MyTemplate<T2>

– That is, there is no inheritance or any other kind of
formal relationship between the two classes

e.g., cannot cast an object of one to an object of the other

– Why?
Compiler defines completely different classes!

Class templates in OO designClass templates in OO design
An alternative to using an inheritance hierarchy
– More flexible, as template classes stand alone
– More efficient than using virtual functions

Both are ways to have objects with independent
behaviors, but all sharing a common interface
The STL is mostly template classes and functions
– Ditto the Java Collections Framework by the way

Even a string is actually a specialization of a
template, defined as follows in namespace std:
– typedef basic_string<char> string;

– Also: typedef basic_string<wchar_t> wstring;

std::std::stringstring

Encapsulates a sequence of characters
– i.e., much more object-oriented than (char *)

Both a size and a capacity (for efficiency)
– Both are mutable, and so are the characters

Member operator functions =, +=, []
Others include substr, insert, compare, clear, …
Nonmember: op<<, op>>, getline, op+, op==, …
See http://www.cplusplus.com/reference/string/ and
librarytools.cpp::stringDemo() in
~mikec/cs32/demos/templates/

Starting Savitch Chapter 18

