
Information hiding

Notice how a user of a service being 
provided by an object, need only know the 
name of the messages that the object will 
accept. 
– They need not have any idea how the actions 

performed in response to these requests will 
be carried out. 

Having accepted a message, an object is 
responsible for carrying it out. 

Receivers and behavior
Messages differ from traditional function 
calls in two very important respects: 

a) A designated receiver accepts the message 
b) The interpretation of the message may be 

different, depending upon the receiver
Although different objects may accept the 
same message, the actions (behavior) the 
object will perform will likely be different

– Might not even know what behavior to perform 
until run-time – a form of late binding

Elements of OOP – Recursive 
Design
3. Every object has its own 
memory, which consists of 
other objects.
– The structure of the part mirrors 

the structure of the larger unit.
Principle of non-interference: 
“Ask not what you can do to
your data structures, but ask 
what your data structures can 
do for you.” (Budd)

Elements of OOP - Classes

4. Every object is an instance of a class. A 
class groups similar objects.
– Flo is an instance of the class Florist

5. The class is the repository for behavior 
associated with an object.
– All objects that are instances of a class use the 

same method in response to similar messages. 

Elements of OOP - Inheritance
6. Classes are 
organized into a 
singly-rooted tree 
structure, called an 
inheritance hierarchy
Data and general
behavior at one 
abstraction level 
extend to lower levels
– But can override

behavior (a later topic)

Levels of abstraction 1
Communities of interacting objects

– Internally: within the program system
– And externally: team of programmers, each 

responsible for different parts of the system
Focus here is on communication at the 
highest level of abstraction
– i.e., lines of communication between the agents



Packages and Namespaces
Used to surround a collection of objects (a 
small community in itself) with a layer

To control visibility from outside the module
– A form of information hiding – promotes low 

coupling, and thus modifiability, reuse potential, 
and so on

Levels of abstraction 2

Clients and servers – abstraction about the 
relationship between two individual objects

– Typically one is providing a service, and the other 
is using the service

Note: not specifically web servers/clients – a 
more general idea about interacting objects 

Levels of abstraction 3, 4, …

3. Describing services
– Focus is on a server
– Independent of clients
– i.e., defining the interface

4. Implementing the interface – from point 
of serving the client(s)
… Implementing individual functions, and 
other background features about which the 
clients have no need to know

Finding the right abstraction level

A critical problem to solve in early stages of 
development – not easy, and no “right way”
– Must determine what details are appropriate at 

each level of abstraction
– And (often more importantly) must decide what 

details should be omitted – to be considered later
Don’t want to ignore important information
– But don’t want to manage too much information, 

or have excessive information hide critical details

On to OO design ideas
Really just an introduction (much more in CS 48)

About “programming in the large”

Small vs. large programs

Programming in the small:
– Usually just one programmer
– He/she understands everything from top to bottom
– Major problems are in the development of algorithms

Programming in the large: 
– System is developed by large team(s) of programmers 
– Major problems are in the management of details
– Communication is vital – between programmers, and 

between their respective software subsystems



Basis for Design (early stages)

Q. What aspects of a problem are known first?
a) Data structures 
b) Functions 
c) Formal specifications
d) Behavior 
A design technique based on behavior can be 
applied from the very beginning of a problem

– Other aspects (the structural properties) necessarily 
require more preliminary analysis

Responsibility-Driven Design
“Understanding responsibilities is key to good object-
oriented design” (Martin Fowler)

RDD concept: some object (and thus some class) must be 
responsible for every task that has to be accomplished by 
the system

RDD is an Agile design technique
Accounts for ambiguous and incomplete specifications
Naturally flows from Analysis to Solution. 
Easily integrates with various aspects of software development

Example: designing the Intelligent 
Interactive Kitchen Helper (IIKH)

Imagine the boss rushes 
in with his specifications 
for your team’s next 
project … carefully 
drawn on a napkin
Briefly: the system is 
intended to replace that 
box of index cards of 
recipes in many kitchens

RDD activities – focus on behavior
First identify and describe the behavior 
of the entire application
– What the system must do
– In what ways the system will interact 

with actors (users, other systems, …) 
Refine this overall behavior into 
behavioral descriptions for subsystems
Translate the behavior descriptions 
into code

IIKH system behavior

Browse a database of recipes 
Add a new recipe to the database 
Edit or annotate an existing recipe 
Plan a meal consisting of several courses 
Scale a recipe for some number of users 
Plan a longer period, say a week 
Generate a grocery list that includes all the 
items in all the menus for a period 

Describing use cases

Idea: Pretend we already had a working 
application - walk through the various uses 
of the system
Use Case vs. Scenario:
– A scenario is a specific use case instance

Goal is to make sure we have uncovered 
all the intended uses of the system
Also helps establish and comprehend the 
“look and feel” of the system

IIKH use cases?



Software components
A software component is simply an abstract design 
entity with which we can associate responsibilities 
for different tasks
May eventually be turned into a class, a function, a 
module, or something else
Design principles:
– A component must have a small, well-defined set of 

responsibilities
– A component should interact with other components to 

the minimal extent possible

CRC cards
Records name, 
responsibilities, 
and collaborators 
of a component 
Inexpensive
Erasable
Physical 

What good are they?

Identifying components

With OOP, mostly asking “What types of 
objects will make up the system?”
Carefully study the problem (especially 
requirements and use cases) to find out
– Candidate classes: nouns in the problem

Some are data – will be treated as class attributes
Most are participants in the solution – agents!

– Operations: verbs in the problem

Component identification in RDD

As we walk through scenarios, we go through 
cycles of identifying a what, followed by a who 
– What action needs to be performed at this moment? 
– Who is the component that is charged with performing 

the action?
Every what must have a who, otherwise it simply 
will not happen.
Postpone decisions about specific GUI details, 
algorithms, … – keep to major responsibilities

Identifying IIKH components
The analysis team (author Budd …) decides the 
major responsibilities divide naturally into two 
groups
– Recipe database – browsing, reviewing/editing recipes
– Menu plans – creating/reviewing plans for meals

Team also decides to include a component called 
a Greeter to present an attractive window, and 
allows the user to select from the various choices
– Idea is that this component will pass on tasks to either 

a recipe database object or a menu planner object

Assigning responsibilities: Greeter

Operations?
– Greet user
– Offer choices
– Pass control

Data?
Collaborators?
– Recipe Database
– Planner



Recipe Database responsibilities
Major responsibilities:
– maintain the database of recipes
– allow user to browse the database
– permit user to edit or annotate existing recipes
– permit the user to add a new recipe

Who should be in charge of editing a recipe?
– Clearly a job for a Recipe class. Okay add one!
– Recipe becomes a collaborator of Recipe Database

Postpone decisions about how user interacts, how 
to store recipes, and other implementation details

Responsibilities of a Recipe

Data: maintain list of ingredients and 
transformation algorithm
Methods:
– Ways to access and edit these data values
– Maybe ways to display/print itself 
– Consider adding other actions later (ability to 

scale itself, integrate ingredients into a grocery 
list, and so on)

Collaborators?

Meal planning sub-system
Planner responsibilities:
– Maintains a sequence of dates (for the user to plan)

Suggests collaboration with a Date object. 
– Let user select sequence of dates for planning
– Let user create a plan or edit an existing plan

Date responsibilities:
– Holds a sequence of meals for a given date

Hmmm … probably will need Meal objects too!
– Let user edit specific meals, annotate dates, print out 

grocery list for entire set of meals
Meal responsibilities – data/operations for one meal

IIKH class associations
Greeter uses 1 Plan Manager and 1 Recipe Database
Recipe Database uses Recipe objects
Plan Manager uses Date objects
Date objects use Meal objects
Meal objects use Recipe objects from Recipe Database

Modeling interactions
Design how objects send messages to other 
objects while fulfilling their responsibilities
Show messages in an interaction diagram

Behavior and state revisited
All components are characterized by two aspects: 
– Behavior – the set of actions a component can do
– State – all the information (data) a component holds 

Btw: it is common for behavior to change state
– e.g., edit recipe change preparation instructions

Similarly: state will very likely affect behavior



Two important design principles

The separation of tasks into the domains of 
different components should be guided by the 
concepts of coupling and cohesion
Cohesion is the degree to which the tasks 
assigned to a component seem to form a 
meaningful unit – should maximize cohesion
Coupling is the degree to which the ability to 
fulfill responsibilities depends on the actions of 
other components – should minimize coupling

Interface vs. implementation

Two views:
– Client: public
– Developer: private

David Parnas:
– The developer of a software component must 

provide the intended user with all the 
information needed to make effective use of 
the services provided by the component, and 
should provide no other information.

Formalize component interfaces

Names are given to each of the responsibilities –
eventually probably mapped to procedure names
Identify the general structure of each component
– Information is assigned to each component and all 

information is accounted for
– Components with only one behavior and no state to 

maintain may be made into functions
Components with many behaviors are more 
properly implemented as classes
Replay scenarios to ensure all data are available 
and all responsibilities are assigned

Selecting names is important

Names should be evocative in the context of the 
problem – meaningful even to non-programmers
– Nouns for classes, modules, variables
– Verbs for operations

Names should be short
Names should be pronounceable (read out load)
Names should be consistent within the project
– Most critical for public parts though

Avoid digits within a name – easy to misread


