Managing dynamic memory

e Constructor (usually) allocates it
StringVar(const char al[]);

StringVar: :StringVar(const char af[]) :
max_length(strlen(a)) {
value = new char[max_length + 1];
strcpy(value, a);

}

e But what happens when the object is destroyed?
StringVar s1('hot'™); // on stack, will go out of scope soon

e Solution is to define a destructor (a.k.a. dtor)

Destructors - dtors

e A dtor Is invoked whenever an object goes out of
scope, or by delete for objects on free store

— Compiler supplies a default one if you don’t
— Default won’t free dynamic memory or other resources

e Defined like a ctor, but with a ~ in front, and it

may not take any arguments
~StringVar();

SiringVar::~StringVar() { delete [] value; }

e Can invoke directly on an object (unlike ctors)
stringPtr->~StringVvar(); //rarely done though

Manager functions (inc. Big 3)

e 4 functions every class must properly manage:

— Default ctor, copy ctor, dtor, and assignment operator
o Compiler supplies defaults of all 4, but often should redefine

— Latter three also known as “The Big Three” — if you need to
redefine one of them, then you need to redefine all three of them

e Copy ctor — StringVar(const StringVaré&);
— Compiler-supplied version makes a “shallow copy”

— Invoked when initializing with object as argument:
StringVar s(otherString);

e Or by “C-style” syntax: StringVar s = otherString;

— Also invoked to pass (or return) an object by value to
(or from) a function

See and (also in ~mikec/cs32/Savitch/Chapterl1/)

Implementing StringVar copy ctor

e Question: why not just keep the default copy ctor
for StringVar objects?

e Ans: Need a complete, independent copy of the
argument — even If the argument is *this

— Therefore must create new dynamic array, and copy

all characters to the new array

StringVar: :StringVar(const StringVar& other) :
max_length(other.length()) {

value = new char[max_length + 1];
strcpy(value, other.value);

Why redefine the = operator?

Given these declarations:
StringVar sl("'cat"), s2('rabbit");

The following statement is legal:
sl = s2;

But without redefining operator=, we would
have s1.value and s2.value both pointing to the
same memory location (a "shallow copy")

— Furthermore, sl1’s old value is now a memory leak

S0: StringVaré& StringVar: :operator=
(const StringVaré& right);

Defining operator= [version 1]

e The definition of = for StringVar could be as follows:
StringVar& StringVar: operator=
(const StringVaré& right){

int new_length = strlen(right.value);
iIT ((new_length) > max_ length)
new_length = max_ length;

for(int 1 = O0; 1 < new_Ilength; i++)
value[i] = right.value[i];
value[new length] = *\0-";
}
e Notice anything wrong with this version?

Defining operator= [version 2]

StringVaré& StringVar::operator=
(const StringVaré& right){
delete[] value;
int new length = strlen(right.value);
max_length = new_ length;
value = new char[max_length + 1];

for(int i = 0; i < new_length; i++)
value[1] = right.valuel[i];
value[new_length] = *\0~;
by
e That solves problem of incompletely copied strings, but ...

e What if somebody uses it as follows? s1 =

Defining operator= [finally?]

e |dea Is to delete value only If more space needed:
StringVar& StringVar::operator=
(const StringVaré& right){
int new_length = strlen(right.value);
1T (new _length > max_length) {
delete[] value;
max_length = new_length;
value = new char[max_ length + 1];
+
for(int 1 = 0; 1 < new_length; i1++)
value[i1] = right.value[i];
value[new _length] = "\0";

Demos: advanced class design

e ~mikec/cs32/demos/ RS

— Mostly about dealing with objects pointing to
dynamic memory

e ~mikec/cs32/demos/ RES

— Full-featured string-like class, with many
overloaded operators and other functions that
are not part of the textbook’s StringVar class

About building a program so
Linux (the OS) can run it

Starting to learn what gcc/gb++ does

(learn how to use g++ In la

)

Based on Reading #5

Program building

e Have: source code — human readable instructions

e Need: machine language program — binary
Instructions and associated data regions, ready to
be executed

e g++/gcc does two basic steps: compile, then link
— To compile means translate to object code

— To link means to combine with other object code
(including library code) into an executable program

mypgm.cpp Compile mypgm.o i mypgm
(source code) (object code) (executable)

Link combines object codes

e From multiple source files and/or libraries

— e.g., always libc.a
mypgm.c Compile mypgm.o mypgm
(source code) (object code) (executable)
libc.a Link
(library file)

e Use -c option with gcc/g++ to stop after creating .o file
-bash-4.2% gcc -c mypgm.c ; Is mypgm*
mypgm.c mypgm.o
— Is necessary to compile a file without a main function
e Later link it to libraries — alone or with other object files:
-bash-4.2% gcc -o mypgm mypgm.o ; Is mypgm*
mypgm mypgm.C mypgm.o

Compiling: 3 steps with C/C++

mypgm.c “Compile* mypgm.o

(source code) (object code)

Preprocess (source code mypgm.s Assemble
with preproc. (assembly

subsitutions) Compile code)

e First the preprocessor runs

— Creates temporary source code with text substitutions as directed
— Use gcc -E (or just cpp) to run it alone — output goes to stdout

e Then the source iIs actually compiled to assembly code
— Use gcc -S to stop at this step and save code in .s file

e Last, assembler produces the object code (machine language)

Automate builds with make
(a short intro to Lab06)

e makeis a Unix/? u tool tho?t executes actions as
necessary to sat s?y dependencies

e First create a "Makefile" (learn tips in Lab06 and Hwe)
pgm: pgm.o # dependency

gcc pgm.o —0 pgm # action (tab required)

pgm.o: pgm.c
gcc -C pgm.c

e \Why bother learning, and using the make tool?

— Some projects have many, many modules; even many
programmers. Automated, so guarantees complete and
up-to-date builds, without needless steps.

— Just type "make” — the program does the rest

