
Inheritance (with C++)
Starting to cover Savitch Chap. 15

More OS topics in later weeks

(memory concepts, libraries)

Inheritance Basics

A new class is inherited from an existing class
Existing class is termed the base class
– It is the "general" class (a.k.a. superclass, or parent)

New class is termed the derived class
– It is the "specific" class (a.k.a. subclass, or child)
– Automatically has (i.e., "inherits") all of the base class's

member functions and variables
– Can define additional member functions and variables

And override inherited virtual functions (but that's a later topic)

Inheritance begets hierarchies
"Is a" relationships
Imagine:

class Basketball

is derived from
class Ball

Then:
any Basketball is a Ball

Reverse not always true: a Ball can be a
Football, or a Baseball, or …

Base class example: Employee
class Employee {
public:

Employee();
Employee(string theName, string theSsn);
string getName() const;
string getSsn() const;
double getNetPay() const;
void setName(string newName);
void setSsn(string newSsn);
void setNetPay(double newNetPay);
void printCheck() const;

private:
string name;
string ssn;
double netPay;

};

Derived class: HourlyEmployee
class HourlyEmployee : public Employee {

// Instantly inherits all methods and data of class Employee
public:

HourlyEmployee();
HourlyEmployee(string theName, string theSsn,

double theWageRate, double theHours);
void setRate(double newWageRate);
double getRate() const;
void setHours(double hoursWorked);
double getHours() const;
void printCheck(); // plan to redefine printCheck function

private:
double wageRate; // new data specific to this derived class
double hours;

};

Writing derived classes
3 possibilities for member functions:
– Inherit – i.e., do nothing
– Redefine – have new method act differently
– Define new – add abilities not in base class at all

2 possibilities for member variables:
– Inherit – though if private, may not directly access/set
– Define new – more data in addition to base class data

Notice: cannot redefine member variables –
attempts to do so will create "shadow variables"
– i.e., just creates a new variable with the same name,

effectively hiding the inherited one – usually a mistake

Derived class constructors
A base class constructor is always invoked first
– i.e., first task of derived class constructor's initialization list
– If no explicit call, base class default constructor will be called

implicitly (compile error if base class has no default ctor)
Must explicitly call to use an alternative base class ctor
– Syntax: BaseClassName(arg1, arg2, …)

Derived Employee example:
HourlyEmployee::HourlyEmployee(string name,

string number, double rate, double hours)
: Employee(name, number), wageRate(rate),

hours(hours)
{ }

– Properly initializes name, ssn: private Employee data

A subclass object's composition
Remember: a derived class definition just
defines part of the resulting object
– The rest of the object is the base class portion

name:
ssn:

netPay:

wageRate:
hours:

HourlyEmployee

Employee portion

Redefining ≠ overloading

Redefining only applies to a derived class
– Same parameter list (i.e., same "signature")
– Essentially "re-writes" the same function

Overloading can happen in base or derived
– Different parameter list – different signature
– Defining a new function with the same name

Recall definition of a signature:
– Name(parameter list)
– Does not include return type, and '&' ignored

Accessing redefined base function

A redefined base class definition is not "lost"
Employee jane;
HourlyEmployee sally;
jane.printCheck(); // Employee function
sally.printCheck(); // HourlyEmployee function
sally.Employee::printCheck();

// uses scope resolution to call Employee function!

Often done while implmenting derived class
– let base function do some of the work

Some functions are not inherited

All "normal" functions in the base class are
inherited in the derived class
The exceptions ("abnormal" functions?):
– Constructors and destructor
– And assignment operator

Compiler generates default versions if you don't
redefine them in the derived class
– But remember that can be problematic if pointing to

dynamic memory, so often should redefine

Subclass operator= and copy ctor
Although not inherited, a derived class typically
must use the base class's versions
e.g., an operator= in class D : public B
D& D::operator=(const D &right) {

// first call assignment operator of base class to take
// care of all the inherited member variables
B::operator=(right);
... // then set new variables of derived class

}
Copy ctor must use base class version too
D::D(const D &other) : B(other), ...{ }

Destructors in derived classes

Easy to write if base class dtor is correct
– No need to call base class dtor – because it is

called automatically at the end of the derived
class’s dtor

So derived class destructors need only
worry about derived class variables
– Usual purpose: release resources allocated

during the object's life
– Let base class dtor handle inherited resources

Examples: PFArrayD and …Bak

Base class PFArrayD:
– Stores a pointer to a double array on free store

Array has a fixed capacity after construction

– Has mgr., other functions, plus [] and = ops
Derived class PFArrayDBak:
– Has pointer to its own array – can be used to

backup and restore data in base class's array
– Redefines ctors, dtor and operator=

~mikec/cs32/demos/
SavitchAbsolute_ch14/

PFArrayD.h

…PFArrayDBak

Writing derivable classes
Always provide a constructor that can be called
with no arguments
Control subclass' access to member variables and
functions as appropriate – three choices:
– public members are accessible to all other classes
– private members are not directly accessible to any

other class – should be used for most variables, and
also appropriate for "helper" functions

– A third choice is protected member access
Only subclasses (those derived from this one) can access
Some consider it bad OOP practice – violates info hiding

protected / private inheritance

Note: rarely used; frankly a little weird
– Destroys “is a” relation of derived class object

Protected inheritance – all public members in the
base class become protected members in the
derived class
class SalariedEmployee : protected Employee {…}

Private inheritance – all members in the base class
become private in the derived class
class SalariedEmployee : private Employee {…}

Many more inheritance issues

For instance: Sometimes it is better to use
“has a” instead of “is a” relationship
– Means one class has an object of another class
– Generally a more flexible design

Can also do multiple inheritance in C++
class ClockRadio :

public Radio, public AlarmClock;
– Tricky though (more later, after virtual keyword)

“Slicing” and “upcasts” – more to come

Virtual functions – concepts

Virtual: exists in essence though not in fact
Idea is that a virtual function can be “used”
before it is defined
– And it might be defined many, many ways!

Relates to OOP concept of polymorphism
– Associate many meanings to one function

Implemented by dynamic binding
– A.k.a. late binding – happens at run-time

Polymorphism example: figures
Imagine classes for several kinds of figures
– Rectangles, circles, and ovals (to start)
– All derive from one base class: Figure

All “Figure” objects inherit: void draw()
– Of course, each one implements it differently!

Rectangle r;
Circle c;
r.draw(); // Calls Rectangle class’s draw()
c.draw(); // Calls Circle class’s draw

Nothing new here yet …

Figures example cont. – center()
Consider that base class Figure has functions
that apply to “all” figures
e.g., center(): moves figure to screen center
– Erases existing drawing, then re-draws the figure
– So Figure::center() uses draw() to re-draw

But which draw() function will be used?
– We’re implementing base class center() function, so

we have to use the base class draw() function. Right?
Actually, it turns out the answer depends on how
draw() is handled in the base class

Poor solution: base works hard
Figure class tries to implement draw to work for
all (known) figures
– First devise a way to identify a figure’s “type”
– Then Figure::draw() uses conditional logic:
if (/* the Figure is a Rectangle */)

Rectangle::draw();
else if (/* the Figure is a Circle */)

Circle::draw();
...

But what if a new kind of figure comes along?
– e.g., how to handle a derived class Triangle?

Better solution: virtual function
Base class declares that the function is virtual:
virtual void draw() const;

Remember it means draw() exists in essence
Such a declaration tells compiler “I don’t know
how this function is implemented, so wait until
it is used in a program, and then get its
implementation from the object instance.”
The instance will exist in fact (eventually)
– Therefore, so will the implementation at that time!

Function “binding” happens late – dynamically

Another virtual function example
(Sale, DiscountSale, Display 15.11)

Record-keeping system for auto parts store
– Track sales, compute daily gross, other stats
– All based on data from individual bills of sale

Problem: lots of different types of bills
Idea – start with a very general Sale class
that has a virtual bill() function:
virtual double bill() const;
Rest of idea – many different types of sales
will be added later, and each type will have
its own version of the bill() function

Sale functions: savings and op <

double Sale::savings(const Sale &other) const
{

return (bill() – other.bill());
}

bool operator < (const Sale &first,
const Sale &second)

{
return (first.bill() < second.bill());

}

Notice both functions use member function bill()!

A class derived from Sale
class DiscountSale : public Sale {
public:
DiscountSale();
DiscountSale(double price,

double discount);
double getDiscount() const;
void setDiscount(double newDiscount);
double bill() const; // implicitly virtual

private:
double discount; // inherits price

};

DiscountSale’s bill() function

First note – it is automatically virtual
– Inherited trait, applies to any descendants
– Also note – rude not to declare it explicitly

Of course, definition never says virtual:
double DiscountSale::bill() const {

double fraction = discount/100;
return (1 – fraction)*getPrice();

}
– Must use access method as price is private

The power of virtual is actual!

e.g., base class Sale written long before
derived class DiscountSale
Sale had members savings and ‘<’ before
there was any idea of class DiscountSale
Yet consider what the following code does
DiscountSale d1, d2;
d1.savings(d2); // calls Sale’s savings function

In turn, class Sale’s savings function uses
class DiscountSale’s bill function.

Wow!

Clarifying some terminology

Recall that overloading ≠ redefining
Now a new term – overriding means
redefining a virtual function
Polymorphism is an OOP concept
– Overriding gives many meanings to one name

Dynamic binding is what makes it all work
“Thus,” as Savitch puts it, “polymorphism,
late binding, and virtual functions are
really all the same topic.”

Why not all virtual functions?

Philosophy issue: pure OOP vs. efficiency
– All functions are virtual by default in another

popular programming language (Java) – there
must take steps to make functions non-virtual

– C++ default is non-virtual – programmer must
explicitly declare (except when inherited trait)

Virtual functions have more “overhead”
– More storage – for class virtual function table
– Slower – a look-up step; less optimization

