Reminder: compiling & linking

linking
compilation <> —»| (relocation +
T linking)

S—
load
file

Usually performed by gcc/g++ in one uninterrupted sequence

Linux object file format e

text

.rodata

e “ELF” - stands for Executable and
Linking Format deta
— A 4-byte magic number followed by a series bss

of named sections
.symtab

e Addresses assume the object file is
placed at memory address 0 relext
— When multiple object files are linked rel.data
together, we must update the offsets ebug

(relocation)

e Tools to read contents: objdump and e
readel T — not available on all systems Section

header table

ELF sections

e _text = machine code (compiled program
instructions)

e .rodata = read-only data

e _data = initialized global variables

e .bss = “block storage start” for
uninitialized global variables — actually
just a placeholder that occupies no space
in the object file

e .symtab = symbol table with information
about functions and global variables
defined and referenced in the program

\177ELF
Jtext

:;odata
:.t.iata
:.l;ss
:;ymtab
:;el.text
:;el.data
:aebug
e

Section
header table

ELF Sections (cont.) W
o .rel.text = list of locations in .text section |~
that need to be modified when linked data
with other object files bss

e _rel.data = relocation information for
global variables referenced but not
defined .rel.text

e .debug = debugging symbol table; only | reldata
created if compiled with -g option

.symtab

.debug

o _line = mapping between line numbers in |-
source and machine code in .text; used e
by debugger programs Section

header table

Reminder again: ... linking

—
ing .
compilation <> W (relocation+ oad
T T linking)

Creation of a load module

Object Module A Load Module

e Interleaved from

Hoader Secion multiple object
Vichne o Header Secton modules

e — Sections must be
Symboltable relocated)

oo Hechne Cox e Addresses relative to
beginning of a
module

Header Section — Necessary to translate
M e e from beginnings of
Tiaized Gata object modules

Sl e o When loaded - OS

S Symbol e will translate again to

ot onten Secton absolute addresses

Loading and memory mapping

e | T e) e | @2 e Includes
poan memory
for stack,
dynamic
data (i.e.,
free store),
and un-
initialized
global data
o Physical
memory is
foadng e | "R shared by
mapping memory multiple
oo mapping programs

From source phf:ﬂ mm:
program to
“placement” in [p——
memory during
execution

bfj = keall;
jrendior

Dynamic memory allocation

Dynamic data

Unused
logical
address

space

stack stack

Ty /1L

by /4L]

(ogica address (loica acress
space o the space o he
program program
OPERATING OPERATING
SYSTEM

PHYSICAL MEMORY PHYSICAL MEMORY
Before dynamic memory allocation After dynamic memory allocation

Sections of an executable file

. . Memory
_ _ _Executable Object File Segments: Invisible ta
" tacavsosos ser code
ELF header ==
Program header Labie (created at rantime) - hasp
[required for esecutables) e
dnit section t palnter]
text section Memory- raglon Koe
shared libraries
TR sm40s0090
data section
Lo T . mee
Run-time hesp
symeat
. y¥malloc)
e | 0} e
Read,/write segment Loaded.
o \.data, bas) from
the
Lol Read-anly segment emcutsble
Saction header table [.init, .text, .rodata) file
ammeabozs ——— T
{required for relocatables)

L

Variables and objects in memory

A 16916
0100000] [0100001d0001010d

e Variables and data objects are data containers
with names

e The value of the variable is the code stored in the
container

e To evaluate a variable is to fetch the code from
the container and interpret it properly

e To store a value in a variable is to code the value
and store the code in the container

e The size of a variable is the size of its container

Overflow is when a data code is
larger than the size of its container

e e.g., char i; //just1byte Variable |
int *p = (int*)&i; // |ega| 01001003100101100000001011010100
*p = 1673579060;
Il result if "big endian" storage: x
e If whole space (X) belongs to this program:
— Seems OK if X does not contain important data for rest of
the program’s execution
— Bad results or crash if important data are overwritten
e Ifall or part of X belongs to another process, the
program is terminated by the OS for a memory
access violation (i.e., segmentation fault)

More about overflow

e Previous slide showed example of "right
overflow" — result truncated (also warning)

01000001010001....

e Compilers handle "left overflow" by
truncating too (usually without any warning)

— Easily happens: unsigned char i = 255;

11111111

i++; // What is the result of this increment?

1o000000d

Placement & padding — word

e Compiler places sraex : o
data at word ™ o Notli -

boundaries Wmmﬂ

- e.g., word = 4 bytes 7 —~c
e Imagine:
struct L veex o
¢ fnos Compilers do it this way

char a; adong
xa
int b; [oz001001% [100101100000001012010100 01101101
} x5
— Classes too

~
amachine word amachine word

See/try ~mikec/cs32/demos/padding .cpp

Pointers are data containers too

e Asitsvalueisa _memor¥
address, we say it "points"”
to a place in memory e

e |t points at just 1 byte, so it e with s
must "know" what data type
starts at that address

— How many bytes? e
— How to interpret the bits? Tooacase] [T
e Question: What is stored in ot

the 4 bytes at addresses e
802340..802343 in the

diagram at right?
— Continued next slide e

- ...0101\01000001010000100100001101000100‘1100... 9
Whatis ———~

addess addiess addiess address.
802340 802341 802342 802343

e Could be four chars: ‘A’, 2

[01000010010000110100010]
‘B ‘C’ D’ 010101000004010000100100001 1010001001100,
’ 1

chartb ASCIl code for ‘A’

e Or it could be two shorts:
16961, 17475
— All numerical values shown here
are for a "little endian” machine ~ EEslsrors (TG nachne
(more about endian next slide)

e Maybe it's a long or an 1’@3
int: 1145258561 GEalnes Mg e
e It could be a floating point
number too: 781.035217 ==

[0100000101000010p100001101000101100.

Beware: two different byte orders

e Matters to actual value of anything but chars
e Say: short int x = 1;
e On a big endian machine it looks like this:
\ /0000000d00000001 \
— Some Macs, JVM, TCP/IP "Network Byte Order"
e On a little endian machine it looks like this:
\ /0000000400000004 \
— Intel, most communication hardware
e Only important when dereferencing pointers
— Seeltry ~mikec/cs32/demos/endian.c

Dynamic memory allocation

o OS memory manager (OSMM) allocates large
blocks at a time to individual processes

e A process memory manager (PMM) then takes over

large memory
blocks

Process memory
management

large memory
blocks

Process memory
management
Process

2

Memory management by OSMM

e Essentially, a simple "accounting” of what process
owns what part(s) of the memory

o Memory allocation — like making an entry in the
accounting "book" that this segment is given to
this process for keeps

e Memory deallocation — an entry that this segment
is no longer needed (process died), so it’s "free"

e OSMM usually keeps track of allocated memory
blocks in a binary heap, to quickly search for
suitable free blocks — hence the name "system
heap" (traditionally called "free store" in C++)

PMM handles a process’s memory

e A "middle manager" — intermediary to OSMM

e Usually keeps a dynamic list of free segments

e When program requests more memory — PMM
searches its list for a suitable segment

e |f none found, asks OSMM for another block
— OSMM searches its heap and delivers a block
— Then PMM carves out a suitable segment

e Can be a significant time delay while all this
goes on — which can slow performance if a
program makes many allocation requests

Dynamic memory in C programs

e Use C standard functions — all in <stdlib_h>

— All use void* — means "any type" — no dereferencing
void *malloc(size_t size);

— Get at least size hytes; contents are arbitrary!
void *calloc(size_t n, size_t elsize);

— Get at least n*elsize bytes; contents cleared!
void *realloc(void *ptr, size_t size);

— Changes size of existing segment (at ptr)
— IMPORTANT: ptr must have come by malloc or calloc
— And beware dangling pointers if data must be moved

e To deallocate, use void free(void *ptr);

Easier, better in C++ programs

e Allocate memory by operator new

— Easier than malloc and other C functions: just
need to specify type — object’s size is known

— Better than the C functions: also calls a
constructor to create the object properly

e Operator delete returns memory to the
free store that was allocated by new

— Also calls class destructor to keep things neat
— Use delete[] if deallocating an array

Dynamic arrays of C++ objects

e MyClass *array = new MyClass[5];
— Creates an array of 5 MyClass objects
— Returns a pointer to the first object

e Default ctor is called for every object

e No way to call a different constructor
— So class must have a no-argument ctor

e delete [] array; . ~mikec/cs32/demos/
—Calls dtor on all 5 objects | dynarray.cpp

Using memory all over the place!

e Fairly simple in C: an
object is either in
static memory, or on (about program on Reader p. 190)
stack, or on heap

e C++ objects can "be" R

more than one place!

e So important in C++
to manage memory

even for stack objects

(with dynamic parts)

Don't corrupt the PMM: guidelines

e Never pass an address to free that was not
returned by malloc, calloc, or realloc

e Deallocate segments allocated by mal loc,
calloc, or realloc only by using free

e Never pass address to delete (or delete[])
that was not previously returned by new

e Deallocate segments allocated by new
using exclusively delete

— And exclusively delete[] if array allocated

‘ BTW: in general, don’t mix C and C++ ways to do things. ‘

Implementing generic types

With C++ templates

Starting Savitch Chapter 17

C++ templates

o Like “blueprints” for the compiler to use in
creating class and function definitions
e Always involve one or more parameterized types
- e.g., function template to compare object sizes:
template <typename T1, typename T2>
int sizeComp(T1l const &ol, T2 const &o02)
{ return (sizeof ol - sizeof 02); }
- e.g., class template for a list that holds any type:
template <typename DataType>
class List { /*here refer to DataType objects */ };
e Can use either keyword typename or class in a
“template prefix”=e.g., template <class T>

Function templates

e An alternative to function overloading
— But code for concrete types created only as needed
o And the programmer does not have to write it!
— Compiler deduces types if user doesn’t specify:
int x = sizeComp(a’, 7);
1/ compiler uses template to create sizeComp(char, int)
— To specify: x = sizeComp<int, int>(a, 7.5);
1/ compiler uses template to create sizeComp(int, int)
e Better choice than macros too
— Strictly type-checked, and no nasty side effects
o See ~mikec/cs32/demos/templates/greater.cpp

More function template issues

e Template definition must be in header file —so
compiler can know how to define the functions
— i.e., cannot be defined in a separate .cpp file
e Sometimes specialized for particular types
— Tells compiler to use specialized version instead of
creating a new definition — e.g. greater for char*:
template <> //<>does notshow a type parameter
char * &greater<char *>(char *s, char *t)
{ /* would use strcmp to compare s and t, instead of operator< */ }
o Empty parameter types — exact types everywhere else
— No type conversions though (must be exact match), so
usually better to just overload instead of specialize

Defining class templates

e Idea: “generalize” data that can be managed by a class

template<typename T>
class Pair {
public:
PairQ;
Pair(T firstval, T secondval);
void setFirst(T newval);
void setSecond(T newval);
T getFirst() const;
T getSecond() const;
private:
T first; T second;
}:

