Reminder: compiling & linking

<>

source
file 1

N———

<

source —
file 2 Ilnklng

compilation (relocation +
— : ‘ library | linking)
i ; object
: : file 1
<>
source object
file N file N
library

object
file M

\/

Usually performed by gcc/g++ in one uninterrupted sequence

\

Linux object file format

e “ELF" — stands for Executable and
Linking Format

— A 4-byte magic number followed by a series
of named sections

e Addresses assume the object file Is
placed at memory address 0

— When multiple object files are linked
together, we must update the offsets
(relocation)

e Tools to read contents: objdump and
readel f — not available on all systems

\177ELF
text

:.r.odata
data
bss
:;ymtab
:;el.text
:;el.data
:Aebug
line

Section
header table

ELF sections

text = machine code (compiled program
Instructions)

.rodata = read-only data
.data = initialized global variables

.bss = “block storage start” for
uninitialized global variables — actually
just a placeholder that occupies no space
In the object file

e .symtab = symbol table with information
about functions and global variables
defined and referenced In the program

\177ELF
text

:.r.odata
data
bss
:;ymtab
:;el.text
:;el.data
:Aebug
line

Section
header table

ELF Sections (cont.)

e .rel.text = list of locations In .text section
that need to be modified when linked
with other object files

e .rel.data = relocation information for

global variables referenced but not
defined

e .debug = debugging symbol table; only
created if compiled with -g option

e .line = mapping between line numbers In
source and machine code in .text; used
by debugger programs

\177ELF
text

:.r.odata
data
bss
:;ymtab
:;el.text
:;el.data
:Aebug
line

Section
header table

Reminder again: ... linking

<=
source

file 1
N———
<
source —
linking

file 2
compilation (relocation +
library linking)
object
file 1

source
file N

library
object
file M

\

Creation of a load module

Object Module A

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section
Machine Code
Section

Initialized data
Section

Symbol table
Section

Object Module B

Load Module

Header Section

Machine Code

Initialized data

Symbol table
Section

Interleaved from
multiple object
modules

— Sections must be

“relocated”

Addresses relative to
beginning of a
module

— Necessary to translate
from beginnings of
object modules

When loaded — OS
will translate again to
absolute addresses

Loading and memory mapping

e Includes
memory
for stack,

Symbol table

| - dynamic
load module @ d a.ta (I . e "y
free store),

and un-

ogical ac
address O R -
(|09iscsgce;dgfress space ac | n Itl al 1Z ed
program 1 . g I O bal d ata

Physical
N memory Is

(logical) address

loading OF;EE#;:\';'G N space of Shared by

memory program 3

mapping memory multi ple
PHYSICAL MEMORY mapplng
programs

From source
program to
“placement” In

memory during
execution

source program

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main()
{
inti;
static int k = 3;

for(i=0; i< 10; i++) {
printf("%d\n",a[i]);
b[i] = k*ali];
}*endfor*/

}Y*end main*/

physical memory

code for printf()

code for top of for loop

code for call to printf()
code for b[i] = k*a[i]

>

array b[]
variable k

Code

initialized
Static data

uninitialized

Code

Dynamic memory allocation

Dynamic data

initialized
Static data

uninitialized

Unused

logical
address
space

Dynamic data

increment of
dynamic data

Unused
logical
address
space

(logical) address
space of the
program

Stack

OPERATING
SYSTEM

(logical) address
space of the
program

OPERATING
SYSTEM

PHYSICAL MEMORY PHYSICAL MEMORY
Before dynamic memory allocation After dynamic memory allocation

Executable Object File

ELF header

Program header table
(required for executables)

.init section

text section

.rodata section

.data section

.bss section

.symtab

.debug

Jine

.strtab

Section header table
(required for relocatables)

Segments:

Kernel virtual memory

0xc0000000

User stack
(created at runtime)

0x40000000

0x08048000

!
f

Memory-mapped region for
shared libraries

Sections of an executable file

Memory
l invisible to
user code

+—3%esp
(stack
pointer)

T

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Loaded
from
the

Read-only segment
(.init, .text, . rodata)

executable
file

0

Unused

Variables and objects in memory

‘A 16916
01000001 0100001000010100

e Variables and data objects are data containers
with names

The value of the variable iIs the code stored In the
container

"0 evaluate a variable is to fetch the code from

the container and interpret it properly

"0 store a value In a variable is to code the value
and store the code In the container

e The size of a variable 1s the size of Its container

Overflow I1s when a data code Is
larger than the size of its container

e e.0., char i; //just1 byte variable |

iInt *p = (int*)&i1; // Iegal 01001001100101100000001011010100
*p = 1673579060;

// result if "big endian" storage:

e |If whole space (X) belongs to this program:

— Seems OK if X does not contain important data for rest of
the program’s execution

— Bad results or crash if important data are overwritten

e If all or part of X belongs to another process, the
program is terminated by the OS for a memory
access violation (i.e., segmentation fault)

More about overflow

e Previous slide showed example of "right
overflow" — result truncated (also warning)

01000001010001...

e Compilers handle "left overflow" by
truncating too (usually without any warning)

— Easily happens: unsigned char i = 255;

11111111

1++; // What Is the result of this increment?

100000000

Placement & padding — word

e Compiler places wrbiex \| 0 ko ph
data at word
boundaries 0000010101101
— eg, WOI’d — 4 bytes amachine word a machinewa

e Imagine:
St ru Ct { data variable x

completely
ignored, junk

char a; padding

X.a

int b ’ ot001001 ~ 410010110000000101101010001101101
¥ X3

— Classes too

a machine word a machine word

See/try ~mikec/cs32/demos/padding.cpp

Pointers are data containers too

e Asitsvalueisa _mem(_)r¥
address, we say It "points"
to a place in memory o
(L pOIntS at JUSt 1 byte, SO It byte with address
must "know" what data type
starts at that address

— How many bytes?
— How to interpret the bits? o [
e Question: What Is stored In

the 4 bytes at addresses
80234 DO 802343 In the ...0101/010000010100001001000011010001001.100...

diagram at right?
— Continued next slide

...0101/010000010100001001000011010001001100...

address address address address
802340 802341 802342 802343

e Could be four chars: ‘A’,
(B1’ £C1’ (D’

e Or It could be two shorts:
16961, 17475 s
— All numerical values shown here N

are for a "little endian" machine | Ay
(more about endian next slide)

address
47
. ay e I S a O n g Or an ...0101/01000001010000100100001101000100/1100...
. . binary codefor int 1145258561
Int- 1145258561 int*p (on alittle endian machine)

e |t could be a floating point EE=
number t00: 781.035217

Ts02340 [float* f binary code for float 781.035217
(on a little endian machine)

...0101j01000001/0100001001000011010001001100...

chartb ASCII code for ‘A’

—
...0101/010000010100001001000011010001001100...

Beware: two different byte orders

e Matters to actual value of anything but chars
e Say. short Int x = 1;
e On a big endian machine it looks like this:
000000000000000
— Some Macs, JVM, TCP/IP "Network Byte Order"
e On a little endian machine it looks like this:
0000000/00000000
— Intel, most communication hardware

e Only important when dereferencing pointers
— See/try ~mikec/cs32/demos/

Dynamic memory allocation

e OS memory manager (OSMM) allocates large
blocks at a time to individual processes

e A process memory manager (PMM) then takes over

Operating System

large memory OS memory large memory
blocks manager blocks
Process memory Process memory
management management
Process

2

Memory management by OSMM

Essentially, a simple "accounting” of what process
owns what part(s) of the memory

Memory allocation — like making an entry in the
accounting "book" that this segment Is given to

this process for keeps

Memory deallocation — an entry that this segment
IS no longer needed (process died), so it's "free"

OSMM usually keeps track of al
blocks In a binary heap, to quick

ocated memory

y search for

suitable free blocks — hence the name "system
heap" (traditionally called "free store" in C++)

PMM handles a process’s memory

e A "middle manager" — intermediary to OSMM
e Usually keeps a dynamic list of free segments

e \When program requests more memory — PMM
searches its list for a suitable segment

e If none found, asks OSMM for another block
— OSMM searches its heap and delivers a block
— Then PMM carves out a suitable segment

e Can be a significant time delay while all this
goes on — which can slow performance if a
program makes many allocation requests

Dynamic memory in C programs

e Use C standard functions — all In <stdlib.h>

— All use void* — means "any type" — no dereferencing
void *malloc(size t size);

— Get at least size bytes; contents are arbitrary!
void *calloc(size_t n, size t elsize);

— Get at least n*elsize bytes; contents cleared!
void *realloc(void *ptr, size t size);

— Changes size of existing segment (at ptr)
— IMPORTANT: ptr must have come by malloc or calloc
— And beware dangling pointers if data must be moved

e To deallocate, use void free(void *ptr);

Easier, better in C++ programs

e Allocate memory by operator new

— Easier than malloc and other C functions: just
need to specify type — object’s size is known

— Better than the C functions: also calls a
constructor to create the object properly

e Operator delete returns memory to the
free store that was allocated by new

— Also calls class destructor to keep things neat
— Use delete[] If deallocating an array

Dynamic arrays of C++ objects

e MyClass *array = new MyClass|5];
— Creates an array of 5 MyClass objects
— Returns a pointer to the first object

e Default ctor is called for every object

e No way to call a different constructor

— So class must have a no-argument ctor

e delete [] array ., _ ~mikec/cs32/demos/
— Calls dtor on all 5 objects |dynarray.cpp

Using memory all over the place!

e Fairly simple in C: an
object is either In
static memory, or on (about program on Reade p. 190)
stack, or on heap e e e

e C++ objects can "be"
more than one place!

e So Important in C++
to manage memory
even for stack objects
(with dynamic parts)

Don’t corrupt the PMM: guidelines

e Never pass an address to free that was not
returned by malloc, calloc, or realloc

e Deallocate segments allocated by mal loc,
calloc, or realloc only by using free

e Never pass address to delete (or delete[])
that was not previously returned by new

e Deallocate segments allocated by new
using exclusively delete

— And exclusively delete[] If array allocated

BTW: in general, don’t mix C and C++ ways to do things.

Implementing generic types

With C++ templates

Starting Savitch Chapter 17

C++ templates

e Like “blueprints” for the compiler to use In
creating class and function definitions

e Always involve one or more parameterized types

— e.g., function template to compare object sizes:
template <typename T1l, typename T2>
Int s1zeComp(T1l const &ol, T2 const &02)

{ return (sizeof ol — sizeof 02); }

— e.g., class template for a list that holds any type:
template <typename DataType>
class List { /*herereferto DataType objects */ };

e Can use either keyword typename or class in a
“template prefix’ —e.g., template <class T>

Function templates

e An alternative to function overloading

— But code for concrete types created only as needed
e And the programmer does not have to write it!

— Compiler deduces types if user doesn’t specify:
iInt X = sizeComp(a’, 7);
// compiler uses template to create sizeComp(char, int)
— To specify: x = sizeComp<int, int>(a’, 7.5);
// compiler uses template to create sizeComp(int, int)
e Better choice than macros too

— Strictly type-checked, and no nasty side effects
e See ~mikec/cs32/demos/templates/

More function template issues

e Template definition must be in header file — so
compiler can know how to define the functions

— 1.e., cannot be defined in a separate .cpp file
e Sometimes specialized for particular types

— Tells compiler to use specialized version instead of
creating a new definition — e.g. greater for char*:
template <> /[<> does not show a type parameter
char * &greater<char *>(char *s, char *t)

{ /* would use strcmp to compare s and t, instead of operator< */ }
e Empty parameter types — exact types everywhere else

— No type conversions though (must be exact match), so
usually better to just overload instead of specialize

Defining class templates

e ldea: “generalize” data that can be managed by a class

template<typename T>
class Pair {
public:
Pair(Q);
Pair(T firstval, T secondVal);
voild setFirst(T newval);
void setSecond(T newvVal);
T getFirst() const;
T getSecond() const;
private:
T first; T second;
};

