
Chapter 5

UNDERSTANDING
REQUIREMENTS

Fast, Cheap, Good: Choose any two.

—anonymous

Objectives

• Define the FURPS+ model.
• Relate types of requirements to UP artifacts.

Introduction

Not all requirements are created equal. This chapter introduces the FURPS+
requirements categories.
Requirements are capabilities and conditions to which the system—and more
broadly, the project—must conform [JBR99]. A prime challenge of requirements
work is to find, communicate, and remember (that usually means record) what
is really needed, in a form that clearly speaks to the client and development
team members.
The UP promotes a set of best practices, one of which is manage requirements.
This does not refer to the waterfall attitude of attempting to fully define and sta-
bilize the requirements in the first phase of a project, but rather—in the context
of inevitably changing and unclear stakeholder's wishes—"a systematic
approach to finding, documenting, organizing, and tracking the changing
requirements of a system" [RUP]; in short, doing it skillfully and not being
sloppy. Note the word changing', the UP embraces change in requirements as a
fundamental driver on projects. Finding is another important term; that is,

41

michaelcostanzo
Text Box
From Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, and the Unified Process. 2nd Edition.

5 - UNDERSTANDING REQUIREMENTS

skillful elicitation via techniques such as use case writing and requirements
workshops.
As indicated in Figure 5.1, one study of factors on challenged projects revealed
that 37% of factors related to problems with requirements, making require-
ments issues the largest single contributor to problems [Standish94]. Conse-
quently, masterful requirements management is important. The waterfall
response to this data would be to try harder to polish, stabilize, and freeze the
requirements before any design or implementation, but history shows this to be
a losing battle. The iterative response is to use a process that embraces change
and feedback as core drivers in discovering requirements.

Figure 5.1 Factors on challenged software projects.

5.1 Types of Requirements

In the UP, requirements are categorized according to the FURPS+
model [Grady92], a useful mnemonic with the following meaning:1

• Functional—features, capabilities, security.

• Usability—human factors, help, documentation.

• Reliability—frequency of failure, recoverability, predictability.

1. There are several systems of requirements categorization and quality attributes pub-
lished in books and by standards organizations, such as ISO 9126 (which is similar to
the FURPS+ list), and several from the Software Engineering Institute (SE1); any can
be used on a UP project.

42

FURTHER READINGS

• Performance—response times, throughput, accuracy, availability, resource
usage.

• Supportability—adaptability, maintainability, internationalization,
con
figurability.

The "+" in FURPS+ indicates ancillary and sub-factors, such as:

• Implementation—resource limitations, languages and tools, hardware, ...

• Interface—constraints imposed by interfacing with external systems.

• Operations—system management in its operational setting.

• Packaging

• Legal—licensing and so forth.

It is helpful to use FURPS+ categories (or some categorization scheme) as a
checklist for requirements coverage, to reduce the risk of not considering some
important facet of the system.

Some of these requirements are collectively called the quality attributes,
quality requirements, or the "-ilities" of a system. These include usability,
reliability, performance, and supportability. In common usage, requirements are
categorized as functional (behavioral) or non-functional (everything else);
some dislike this broad generalization [BCK98], but it is very widely used.

Functional requirements are explored and recorded in the Use-Case Model, the
subject of the next chapter, and in the system features list of the Vision artifact.
Other requirements can be recorded in the use cases they relate to, or in the
Supplementary Specifications artifact. The Vision artifact summarizes
high-level requirements that are elaborated in these other documents. The
Glossary records and clarifies terms used in the requirements. The Glossary in
the UP also encompasses the concept of the data dictionary, which records
requirements related to data, such as validation rules, acceptable values, and so
forth. Prototypes are a mechanism to clarify what is wanted or possible.

As we shall see when exploring architectural analysis, the quality requirements
have a strong influence on the architecture of a system. For example, a high-per-
formance, high-reliability requirement will influence the choice of software and
hardware components, and their configuration. The need for easy adaptability
due to frequent changes in the functional requirements would likewise funda-
mentally shape the design of the software.

5.2 Further Readings

References related to requirements with use cases are covered in a subsequent
chapter. Use-case-oriented requirements texts, such as Writing Effective Use
Cases [CockburnOl] are the recommended starting point in requirements study,
rather than more general (and usually, traditional) requirements texts.

43

44

5 - UNDERSTANDING REQUIREMENTS

There is a broad effort to discuss requirements—and a wide variety of software
engineering topics—under the umbrella of the Software Engineering Body of
Knowledge (SWEBOK), available at www.swebok.org.
The SEI (www.sei.cmu.edu) has several proposals related to quality require-
ments. The ISO 9126, IEEE Std 830, and IEEE Std 1061 are standards related
to requirements and quality attributes, and available on the Web at various
sites.
Some cautions regarding general requirements books, even those that purport
to cover use cases, iterative development, or indeed even requirements in the
UP:
1. Most are written with a waterfall bias of significant or "thorough" up-front

requirements definition before moving on to design and implementation.
This is not meant to invalidate their broader value or often deep and useful
method-independent requirements insights, but to clarify that they do not
represent an accurate view of iterative development. This is because the
authors may have a primary background in waterfall projects, working to
refine, carefully and thoroughly define, and finalize the requirements before
continuing to design. Those books that also mention iterative development
may do so superficially, perhaps with "iterative" material added to appeal to
modern trends. Thus, requirements books and articles should be read with
alertness; one could be lulled into the idea of trying to carefully define all
the requirements in the initial phase, which is not consistent with an itera
tive process.

2. Many general requirements books that also purport to include use cases do
so superficially, or misunderstand what use-case driven requirements really
means. This may be because the authors' primary background is in tradi
tional requirements methods, and there has been an attempt to recently
append use cases to their prior method, without appreciating that a central
idea of use cases as envisioned by Ivar Jacobson and the Ul' is to make use
cases the heart-and-center overarching requirements approach—replacing
other requirements documents as the central element; use cases suffuse and
drive the requirements work, rather than being some minor or medium-
level adjunct technique appended to traditional requirements documents or
approaches.

In summary, general requirements books offer useful advice on techniques and
issues of requirements gathering, written by skilled practitioners, but often
present the advice in a waterfall process context, and without great insight into
the deeper implications of use cases. Any variant of process advice implying "try
to define most of the requirements, and then move forward to design and imple-
mentation" is not consistent with iterative development and the UP.

Chapter 6

USE-CASE MODEL: WRITING
REQUIREMENTS IN CONTEXT

The indispensable first step to getting the things
you want out of life: decide what you want.

—Ben Stein

Objectives

• Identify and write use cases.
• Relate use cases to user goals and elementary business processes.
• Use the brief, casual, and fully dressed formats, in an essential style.
• Relate use case work to iterative development.

Introduction

This chapter is worth studying during a first read of the book because use cases
are a widely used mechanism to discover and record requirements (especially
functional); they influence many aspects of a project, including OOA/D. It is
worth both knowing about and creating use cases.
Writing use cases—stories of using a system—is an excellent technique to
understand and describe requirements. This chapter explores key use case con-
cepts and presents sample use cases for the NextGen application.
The UP defines the Use-Case Model within the Requirements discipline.
Essentially, this is the set of all use cases; it is a model of the system's function-
ality and environment.

45

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.1 Goals and Stories

Customers and end users have goals (also known as needs in the UP) and want
computer systems to help meet them, ranging from recording sales to estimat-
ing the flow of oil from future wells. There are several ways to capture these
goals and system requirements; the better ones are simple and familiar because
this makes it easier—especially for customers and end users—to contribute to
their definition or evaluation. That lowers the risk of missing the mark.
Use cases are a mechanism to help keep it simple and understandable for all
stakeholders. Informally, they are stories of using a system to meet goals. Here
is an example brief format use case:

Process Sale: A customer arrives at a checkout with items to
purchase. The cashier uses the POS system to record each pur-
chased item. The system presents a running total and line-item
details. The customer enters payment information, which the
system validates and records. The system updates inventory.
The customer receives a receipt from the system and then leaves
with the items.

Use cases often need to be more elaborate than this, but the essence is discover-
ing and recording functional requirements by writing stories of using a system
to help fulfill various stakeholder goals; that is, cases of use.] It isn't supposed to
be a difficult idea, although it may indeed be difficult to discover or decide what
is needed, and write it coherently at a useful level of detail.
Much has been written about use cases, and while worthwhile, there is always
the risk among creative, thoughtful people to obscure a simple idea with layers
of sophistication. It is usually possible to spot a novice use-case modeler (or a
serious Type A analyst) by an over-concern with secondary issues such as use
case diagrams, use case relationships, use case packages, optional attributes,
and so forth, rather than writing the stories. That said, a strength of the use
case mechanism is the capacity to scale both up and down in terms of sophistica-
tion and formality, depending on need.

6.2 Background

The idea of use cases to describe functional requirements was introduced in
1986 by Ivar Jacobson [Jacobson92], a main contributor to the UML and UP.
Jacobson's use case idea was seminal and widely appreciated; simplicity and

1. The original term in Swedish literally translates as "usage case."

46

USE CASES AND ADDING VALUE

utility being its chief virtues. Although many have made contributions to the
subject, arguably the most influential, comprehensive, and coherent next step in
defining what use cases are (or should be) and how to write them came from
Alistair Cockburn, summarized in the very popular text Writing Effective Use
Cases [CockburnOl], based on his earlier work and writings stemming from
1992 onwards. This introduction is therefore based upon and consistent with the
latter work.

: 6.3 Use Cases and Adding Value

First, some informal definitions: an actor is something with behavior, such as a
person (identified by role), computer system, or organization; for example, a
cashier.
A scenario is a specific sequence of actions and interactions between actors and
the system under discussion; it is also called a use case instance. It is one par-
ticular story of using a system, or one path through the use case; for example,
the scenario of successfully purchasing items with cash, or the scenario of failing
to purchase items because of a credit card transaction denial.
Informally then, a use case is a collection of related success and failure scenar-
ios that describe actors using a system to support a goal. For example, here is a
casual format use case that includes some alternate scenarios:

Handle Returns

Main Success Scenario: A customer arrives at a checkout with
items to return. The cashier uses the POS system to record each
returned item ...
Alternate Scenarios:
If the credit authorization is reject, inform the customer and ask
for an alternate payment method.
If the item identifier is not found in the system, notify the Cash-
ier and suggest manual entry of the identifier code (perhaps it is
corrupted).
If the system detects failure to communicate with the external
tax calculator system, ...

An alternate, but similar definition of a use case is provided by the RUP:
A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of
value to a particular actor [RUP].

47

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The phrasing "an observable result of value" is subtle but important, because it
stresses the attitude that the system behavior should emphasize providing
value to the user.

A key attitude in use case work is to focus on the question "How can using the
system provide observable value to the user, or fulfill their goals?", rather
than merely thinking of system requirements in terms of a "laundry list" of
features or functions.

Perhaps it seems obvious to stress providing observable user value, but the soft-
ware industry is littered with failed projects that did not deliver what people
really needed. The feature and function list approach to capturing requirements
can contribute to that negative outcome because it does not encourage the stake-
holders to consider the requirements in a larger context of using the system in a
scenario to achieve some observable result of value, or some goal. In contrast,
use cases place features and functions in a goal-oriented context. Hence the
chapter title.2

This is a key idea that Jacobson was trying to convey in the use case concept: Do
requirements work with a focus on how a system can add value and fulfill goals.

6.4 Use Cases and Functional Requirements

Use cases are requirements; primarily they are functional requirements that
indicate what the system will do. In terms of the FURPS+ requirements types,
they emphasize the "F" (functional or behavioral), but can also be used for other
types, especially when those other types strongly relate to a use case. In the
UP—and most modern methods—use cases are the central mechanism that is
recommended for their discovery and definition. Use cases define a promise or
contract of how a system will behave.

To be clear: Use cases are requirements (although not all requirements). Some
think of requirements only as "the system shall do..." function or feature lists.
Not so, and a key idea of use cases is to (usually) reduce the importance or use of
detailed older-style feature lists and rather, write use cases for the functional
requirements. More on this point in a later section.

Use cases are text documents, not diagrams, and use-case modeling is primarily
an act of writing text, not drawing. However, the UML defines a use case dia-
gram to illustrate the names of use cases and actors, and their relationships.

2. Originally from the aptly titled Uses Cases: Requirements in Context |GKOO| (chapter
title adapted with permission of the authors).

48

USE CASE TYPES AND FORMATS

6.5 Use Case Types and Formats

Black-Box Use Cases and System Responsibilities

Black-box use cases are the most common and recommended kind; they do not
describe the internal workings of the system, its components, or design. Rather,
the system is described as having responsibilities, which is a common unifying
metaphorical theme in object-oriented thinking—software elements have
responsibilities and collaborate with other elements that have responsibilities.

By defining system responsibilities with black-box use cases, it is possible to
specify what the system must do (the functional requirements) without deciding
how it will do it (the design). Indeed, the definition of "analysis" versus "design"
is sometimes summarized as "what" versus "how." This is an important theme in
good software development: During requirements analysis avoid making "how"
decisions, and specify the external behavior for the system, as a black box. Later,
during design, create a solution that meets the specification.

Black-box style Not

The system records the sale. The system writes the sale to a data-
base. ...or (even worse):
The system generates a SQL INSERT
statement for the sale...

Formality Types

Use cases are written in different formats, depending on need. In addition to the
black-box versus white-box visibility type, use cases are written in varying
degrees of formality:

• brief—terse one-paragraph summary, usually of the main success scenario.
The prior Process Sale example was brief.

• casual—informal paragraph format. Multiple paragraphs that cover vari
ous scenarios. The prior Handle Returns example was casual.

• fully dressed—the most elaborate. All steps and variations are written in
detail, and there are supporting sections, such as preconditions and success
guarantees.

The following example is a fully dressed case for our NextGen case study.

49

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.6 Fully Dressed Example: Process Sale

Fully dressed use cases show more detail and are structured; they are useful in
order to obtain a deep understanding of the goals, tasks, and requirements. In
the NextGen POS case study, they would be created during one of the early
requirements workshops in a collaboration of the system analyst, subject matter
experts, and developers.

The usecases.org Format

Various format templates re available for fully dressed use cases. However, per-
haps the most widely used and shared format is the template available at
www.usecases.org. The following example illustrates this style.

Please note that this is the book's primary case study example of a detailed use
case; it shows many common elements and issues.

Use Case UC1: Process Sale

Primary Actor: Cashier
Stakeholders and Interests:
- Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short

ages are deducted from his/her salary.
- Salesperson: Wants sales commissions updated.
- Customer: Wants purchase and fast service with minimal effort. Wants proof of pur

chase to support returns.
- Company: Wants to accurately record transactions and satisfy customer interests.

Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

- Government Tax Agencies: Want to collect tax from every sale. May be multiple agen
cies, such as national, state, and county.

- Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running total.

Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.

50

FULLY DRESSED EXAMPLE: PROCESS SALE

5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs completed sale and sends sale and payment information to the external

Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, System fails:

To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.

1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean

state.
2. Cashier starts a new sale.

3a. Invalid identifier:
1. System signals error and rejects entry. 3b. There are multiple of same item

category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6c. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS terminal. 4a.

The system generated item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier enters override price.
2. System presents new price.

5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues. 1a. System
detects that the service does not restart.

1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.

5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.

6a. Customer says they intended to pay by cash but don't have enough cash:
1a. Customer uses an alternate payment method.
1b. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

51

52

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

7b. Paying by credit:

1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment Authoriza

tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.
5. System presents credit payment signature input mechanism.
6. Cashier asks Customer for a credit payment signature. Customer enters signa

ture.
7c. Paying by check...
7d. Paying by debit...
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier. 9a.
There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible): 1.
Cashier requests gift receipt and System presents it.

Special Requirements:
- Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
- Credit authorization response within 30 seconds 90% of the time.
- Somehow, we want robust recovery when access to remote services such the inven

tory system is failing.
- Language internationalization on the text displayed.
- Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:
3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-

board.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we pre-

dict many customers will want digital signature capture.

FULLY DRESSED EXAMPLE: PROCESS SALE

Frequency of Occurrence: Could be nearly continuous.

Open Issues:
- What are the tax law variations?
- Explore the remote service recovery issue.
- What customization is needed for different businesses?
- Must a cashier take their cash drawer when they log out?
- Can the customer directly use the card reader, or does the cashier have to do it?

This use case is illustrative rather than exhaustive (although it is based on a
real POS system's requirements). Nevertheless, there is enough detail and com-
plexity here to offer a realistic sense that a fully-dressed use case can record
many requirement details. This example will serve well as a model for many use
case problems.

The Two-Column Variation

Some prefer the two-column or conversational format, which emphasizes the
fact that there is an interaction going on between the actors and the system. It
was first proposed by Rebecca Wirfs-Brock in [Wirfs-Brock93], and is also pro-
moted by Constantine and Lockwood to aid usability analysis and engineering
[CL99]. Here is the same content using the two-column format:

Use Case UC1: Process Sale

Primary Actor: ...
... as before ...

Main Success Scenario:
Actor Action (or Intention)
1. Customer arrives at a POS checkout

with goods and/or services to
purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier.

Cashier repeats steps 3-4 until indi-
cates done.
6. Cashier tells Customer the total, and

asks for payment.
7. Customer pays.

System Responsibility

4. Records each sale line item and pre
sents item description and running
total.

5. System presents total with taxes
calculated.

8. Handles payment.

53

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

9. Logs the completed sale and sends
information to the external account-
ing (for all accounting and commis-
sions) and inventory systems (to
update inventory). System presents
receipt.

The Best Format?

There isn't one best format; some prefer the one-column style, some the two-col-
umn. Sections may be added and removed; heading names may change. None of
this is particularly important; the key thing is to write the details of the main
success scenario and its extensions, in some form. [Cockburnl] summarizes
many usable formats.

Personal Practice

This is my practice, not a recommendation. For some years, I used the
two-column format because of its clear visual separation in the conversation.
However, I have reverted to a one-column style as it is more compact and
easier to format, and the slight value of the visually separated conversation
does not for me outweigh these benefits. I find it still simple to visually iden-
tify the different parties in the conversation (Customer, System, ...) if each
party and the System responses are usually allocated to their own steps.

6.7 Explaining the Sections

Preface Elements

Many optional preface elements are possible. Only place elements at the start
which are important to read before the main success scenario. Move extraneous
"header" material to the end of the use case.

Primary Actor: The principal actor that calls upon system services to fulfill a goal.

Important: Stakeholders and Interests List

This list is more important and practical than may appear at first glance. It sug-
gests and bounds what the system must do. To quote:

54

EXPLAINING THE SECTIONS

The [system] operates a contract between stakeholders, with the
use cases detailing the behavioral parts of that contract...The
use case, as the contract for behavior, captures all and only the
behaviors related to satisfying the stakeholders' interests
[Cockburn0l].

This answers the question: What should be in the use case? The answer is: That
which satisfies all the stakeholders' interests. In addition, by starting with the
stakeholders and their interests before writing the remainder of the use case,
we have a method to remind us what the more detailed responsibilities of the
system should be. For example, would I have identified a responsibility for sales-
person commission handling if I had not first listed the salesperson stakeholder
and their interests? Hopefully eventually, but perhaps I would have missed it
during the first analysis session. The stakeholder interest viewpoint provides a
thorough and methodical procedure for discovering and recording all the
required behaviors.

Stakeholders and Interests:
- Cashier: Wants accurate, fast entry and no payment errors, as cash drawer shortages

are deducted from his/her salary.
- Salesperson: Wants sales commissions updated.
- �

Preconditions and Success Guarantees (Postconditions)

Preconditions state what must always be true before beginning a scenario in
the use case. Preconditions are not tested within the use case; rather, they are
conditions that are assumed to be true. Typically, a precondition implies a sce-
nario of another use case that has successfully completed, such as logging in, or
the more general "cashier is identified and authenticated." Note that there are
conditions that must be true, but are not of practical value to write, such as "the
system has power." Preconditions communicate noteworthy assumptions that
the use case writer thinks readers should be alerted to.

Success guarantees (or postconditions) state what must be true on success-
ful completion of the use case�either the main success scenario or some alter-
nate path. The guarantee should meet the needs of all stakeholders.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Main Success Scenario and Steps (or Basic Flow)

This has also been called the "happy path" scenario, or the more prosaic "Basic
Flow." It describes the typical success path that satisfies the interests of the

55

56

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

stakeholders. Note that it often does not include any conditions or branching.
Although not wrong or illegal, it is arguably more comprehensible and extend-ible
to be very consistent and defer all conditional handling to the Extensions section.

Suggestion

Defer all conditional and branching statements to the Extensions section.

The scenario records the steps, of which there are three kinds:

1. An interaction between actors.3
2. A validation (usually by the system).
3. A state change by the system (for example, recording or modifying

something).
Step one of a use case does not always fall into this classification, but indicates
the trigger event that starts the scenario.
It is a common idiom to always capitalize the actors' names for ease of identification.
Observe also the idiom that is used to indicate repetition.

Main Success Scenario:
1. Customer arrives at a POS checkout with items to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. ...
Cashier repeats steps 3-4 until indicates done.
5. ...

Extensions (or Alternate Flows)

Extensions are very important. They indicate all the other scenarios or
branches, both success and failure. Observe in the fully dressed example that
the Extensions section was considerably longer and more complex than the
Main Success Scenario section; this is common and to be expected. They are also
known as "Alternative Flows."

In thorough use case writing, the combination of the happy path and extension
scenarios should satisfy "nearly" all the interests of the stakeholders. This point is
qualified, because some interests may best be captured as non-functional

3. Note that the system under discussion itself should be considered an actor when it plays
an actor role collaborating with other systems.

EXPLAINING THE SECTIONS

requirements expressed in the Supplementary Specification rather than the use
cases.
Extension scenarios are branches from the main success scenario, and so can be
notated with respect to it. For example, at Step 3 of the main success scenario
there may be an invalid item identifier, either because it was incorrectly entered
or unknown to the system. An extension is labeled "3a"; it first identifies the
condition and then the response. Alternate extensions at Step 3 are labeled "3b"
and so forth.

Extensions:
3a. Invalid identifier:

1. System signals error and rejects entry.
3b. There are multiple of same item category and tracking unique item identity not

important (e.g., 5 packages of veggie-burgers): 1. Cashier can enter item
category identifier and the quantity.

An extension has two parts: the condition and the handling.

Guideline: Write the condition as something that can be detected by the system
or an actor. To contrast:

5a. System detects failure to communicate with external tax calculation system service:
5a. External tax calculation system not working:

The former style is preferred because this is something the system can detect;
the latter is an inference.
Extension handling can be summarized in one step, or include a sequence, as in
this example, which also illustrates notation to indicate that a condition can
arise within a range of steps:

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters the item identifier for removal from the sale.
2. System displays updated running total.

At the end of extension handling, by default the scenario merges back with the
main success scenario, unless the extension indicates otherwise (such as by
halting the system).
Sometimes, a particular extension point is quite complex, as in the "paying by
credit" extension. This can be a motivation to express the extension as a sepa-
rate use case.

This extension example also demonstrates the notation to express failures
within extensions.

57

58

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

7b. Paying by credit:
1. Customer enters their credit account information.
2. System requests payment validation from external Payment Authorization Ser

vice System.

2a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. ...

If it is desirable to describe an extension condition as possible during any (or at
least most) steps, the labels *a, *b, ..., can be used.

*a. At any time, System crashes:
In order to support recovery and correct accounting, ensure all transaction sensitive

state and events can be recovered at any step in the scenario.
1. Cashier restarts the System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

Special Requirements

If a non-functional requirement, quality attribute, or constraint relates specifi-
cally to a use case, record it with the use case. These include qualities such as
performance, reliability, and usability, and design constraints (often in I/O
devices) that have been mandated or considered likely.

Special Requirements:
- Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
- Credit authorization response within 30 seconds 90% of the time.
- Language internationalization on the text displayed.
- Pluggable business rules to be insertable at steps 2 and 6.

Recording these with the use case is classic UP advice, and a reasonable location
when first writing the use case. However, many practitioners find it useful to
ultimately consolidate all non-functional requirements in the Supplementary
Specification, for content management, comprehension, and readability, because
these requirements usually have to be considered as a whole during architec-
tural analysis.

Technology and Data Variations List

Often there are technical variations in how something must be done, but not
what, and it is noteworthy to record this in the use case. A common example is a

GOALS AND SCOPE OF A USE CASE

technical constraint imposed by a stakeholder regarding input or output tech-
nologies. For example, a stakeholder might say, "The POS system must support
credit account input using a card reader and the keyboard." Note that these are
examples of early design decisions or constraints; in general, it is skillful to
avoid premature design decisions, but sometimes they are obvious or unavoid-
able, especially concerning input/output technologies.

It is also necessary to understand variations in data schemes, such as using
UPCs or EANs for item identifiers, encoded in bar code symbology.

This list is the place to record such variations. It is also useful to record varia-
tions in the data that may be captured at a particular step.

Technology and Data Variations List:
3a. Item identifier entered by laser scanner or keyboard.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we predict
many customers will want digital signature capture.

Suggestion

This section should not contain multiple steps to express varying behavior
for different cases. If that is necessary, say it in the Extensions section.

6.8 Goals and Scope of a Use Case

How should use cases be discovered? It is common to be unsure if something is a
valid (or more practically, a useful) use case. Tasks can be grouped at many lev-
els of granularity, from one or a few small steps, up to enterprise-level activities.

At what level and scope should use cases be expressed?

The following sections examine the simple ideas of elementary business pro-
cesses and goals as a framework for identifying the use cases for an application.

Use Cases for Elementary Business Processes

Which of these is a valid use case?

� Negotiate a Supplier Contract

� Handle Returns

� Log In

59

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

An argument can be made that all of these are use cases at different levels,
depending on the system boundary, actors, and goals. Evaluation of these candi-
dates is presented after an introduction to elementary business processes.

Rather than asking in general, "What is a valid use case?",
question for the POS case study is: What is a useful level to
express use cases for application requirements analysis?

60

Guideline: The EBP Use Case

For requirements analysis for a computer application, focus on use cases at
the level of elementary business processes (EBPs).

EBP is a term from the business process engineering field,4 defined as:

A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state. e.g., Approve
Credit or Price Order [original source lost].

This can be taken too literally: Does a use case fail as an EBP if two people are
required, or if a person has to walk around? Probably not, but the feel of the def-
inition is about right. It's not a single small step like "delete a line item" or
"print the document." Rather, the main success scenario is probably five or ten
steps. It doesn't take days and multiple sessions, like "negotiate a supplier con-
tract;" it is a task done during a single session. It is probably between a few min-
utes and an hour in length. As with the UP's definition, it emphasizes adding
observable or measurable business value, and it comes to a resolution in which
the system and data are in a stable and consistent state.

A common use case mistake is defining many use cases at too low a level; that is,
as a single step, subfunction, or subtask within an EBP.

Reasonable Violations of the EBP Guideline

Although the "base" use cases for an application should satisfy the EBP guide-
line, it is frequently useful to create separate "sub" use cases representing
sub-tasks or steps within a base use case. Use cases can exist that fail the EBP
test; many potentially exist at a lower level. The guideline is only used to find the
dominant level of use cases in requirements analysis for an application; that is,
the level to focus on for naming and writing them.

4. EBP is similar to the term user task in usability engineering, although the meaning
is less strict in that domain.

a more relevant

GOALS AND SCOPE OF A USE CASE

For example, a subtask or extension such as "paying by credit" may be repeated
in several base use cases. It is desirable to separate this into its own use case
(that does not satisfy the EBP guideline) and link it to several base use cases, to
avoid duplication of the text.
Chapter 25 explores the issue of use case relationships.

Use Cases and Goals

Actors have goals (or needs) and use applications to help satisfy them. Conse-
quently, an EBP-level use case is called a user goal-level user case, to empha-
size that it serves (or should serve) to fulfill a goal of a user of the system, or the
primary actor.
And it leads to a recommended procedure:
1. Find the user goals.
2. Define a use case for each.
This is slight shift in emphasis for the use-case modeler. Rather than asking
"What are the use cases?", one starts by asking: "What are your goals?" In fact,
the name of a use case for a user goal should reflect its name, to emphasize this
viewpoint�Goal: capture or process a sale; use case: Process Sale.
Note that because of this symmetry, the EBP guideline can be equally applied to
decide if a goal or a use case is at a suitable level.
Thus, here is a key idea regarding investigating user goals vs. investigating use
cases:

Imagine we are together in a requirements workshop. We could ask either:
� "What do you do?" (roughly a use case-oriented question) or,
� "What are your goals?"
Answers to the first question are more likely to reflect current solutions and
procedures, and the complications associated with them.
Answers to the second question, especially combined with an investigation to
move higher up the goal hierarchy ("what is the goal of that goal?") open up
the vision for new and improved solutions, focus on adding business value,
and get to the heart of what the stakeholders want from the system under
discussion.

61

62

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Example: Applying the EBP Guideline

As the system analyst responsible for the NextGen system requirements discov-
ery, you are investigating user goals. The conversation goes like this: During a
requirements workshop:

System analyst: "What are some of your goals in the context of using a POS
system?"
Cashier: "One, to quickly log in. Also, to capture sales."
System analyst: "What do you think is the higher level goal motivating log-
ging in?"
Cashier: "I'm trying to identify myself to the system, so it can validate that
I'm allowed to use the system for sales capture and other tasks." System
analyst: "Higher than that?"
Cashier: "To prevent theft, data corruption, and display of private company
information."

Note the analyst's strategy of searching up the goal hierarchy to find higher
level user goals that still satisfy the EBP guideline, to get at the real intent
behind the action, and also to understand the context of the goals.

"Prevent theft, ..." is higher than a user goal; it may be called an enterprise goal,
and is not an EBP. Therefore, although it can inspire new ways of thinking
about the problem and solutions (such as eliminating POS systems and cashiers
completely), we will set it aside for now.

Lowering the goal level to "identify myself and be validated" appears closer to
the user goal level. But is it at the EBP level? It does not add observable or mea-
surable business value. If the CEO asked, "What did you do today?" and you
said "I logged in 20 times!", she would not be impressed. Consequently, this is a
secondary goal, always in the service of doing something useful, and is not an
EBP or user goal. By contrast, "capture a sale" does fit the criteria of being an
EBP or user goal.

As another example, in some stores there is a process called "cashing in", in
which a cashier inserts their own cash drawer tray into the terminal, logs in,
and tells the system how much cash is in drawer. Cashing In is an EBP-level (or
user goal level) use case; the log in step, rather than being a EBP-level use case,
is a subfunction goal in support of the goal of cashing in.

Subfunction Goals and Use Cases

Although "identify myself and be validated" (or "log in") has been eliminated as
a user goal, it is a goal at a lower level, called a subfunction goal�subgoals
that support a user goal. Use cases should only occasionally be written for these
subfunction goals, although it is a common problem that use case experts
observe when asked to evaluate and improve (usually simplify) a set of use
cases.

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

It is not illegal to write use cases for subfunction goals, but it is not always help-
ful, as it adds complexity to a use-case model; there can be hundreds of
subfunc-tion goals�or subfunction use cases�for a system.
Important point: The number and granularity of use cases influences the time
and difficulty to understand, maintain, and manage the requirements.
The most common, valid motivation to express a subfunction goal as a use case
is when the subfunction is repeated in or is a precondition for multiple user
goal-level use cases. This in fact is probably true of "identify myself and be vali-
dated," which is a precondition of most, if not all, other user goal-level use cases.
Consequently, it may be written as the use case Authenticate User.

Goals and Use Cases Can Be Composite

Goals are usually composite, from the level of an enterprise ("be profitable"), to
many supporting intermediate goals while using applications ("sales are cap-
tured"), to supporting subfunction goals within applications ("input is valid").
Similarly, use cases can be written at different levels to satisfy these goals, and
can be composed of lower level use cases.

These varying goal and use case levels are a common source of confusion in
identifying the appropriate level of use cases for an application. The EBP
guideline provides guidance to filter out excessive low-level use cases.

6.9 Finding Primary Actors, Goals, and Use Cases

Use cases are defined to satisfy the user goals of the primary actors. Hence, the
basic procedure is:
1. Choose the system boundary. Is it just a software application, the hardware

and application as a unit, that plus a person using it, or an entire organiza
tion?

2. Identify the primary actors�those that have user goals fulfilled through
using services of the system.

3. For each, identify their user goals. Raise them to the highest user goal level
that satisfies the EBP guideline.

4. Define use cases that satisfy user goals; name them according to their goal.
Usually, user goal-level use cases will be one-to-one with user goals, but
there is at least one exception, as will be examined.

63

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Step 1: Choosing the System Boundary

For this case study, the POS system itself is the system under design; every-
thing outside of it is outside the system boundary, including the cashier, pay-
ment authorization service, and so on.
If it is not clear, defining the boundary of the system under design can be clari-
fied by defining what is outside�the external primary and supporting actors.
Once the external actors are identified, the boundary becomes clearer. For
example, is the complete responsibility for payment authorization within the
system boundary? No, there is an external payment authorization service actor.

Steps 2 and 3: Finding Primary Actors and Goals

It is artificial to strictly linearize the identification of primary actors before user
goals; in a requirements workshop, people brainstorm and generate a mixture of
both. Sometimes, goals reveal the actors, or vice versa.
Guideline: Emphasize brainstorming the primary actors first, as this sets up the
framework for further investigation.

Reminder Questions to Find Actors and Goals

In addition to obvious primary actors and user goals, the following questions
help identify others that may be missed:

Who starts and stops the system?
Who does user and security
management?

Is there a monitoring process that
restarts the system if it fails?
How are software updates handled?
Push or pull update?

Who does system administration?
Is "time" an actor because the sys-
tem does something in response to a
time event?
Who evaluates system activity or
performance?
Who evaluates logs? Are they
remotely retrieved?

64

Primary and Supporting Actors

Recall that primary actors have user goals fulfilled through using services of the
system. They call upon the system to help them. This is in contrast to support-
ing actors, which provide services to the system under design. For now, the focus
is on finding the primary actors, not the supporting ones.

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

Recall also that primary actors can be�among other things�other computer
systems, such as "watchdog" software processes.

Suggestion

Be suspicious if no primary actors are external computer systems.

The Actor-Goal List

Record the primary actors and their user goals in an actor-goal list. In terms of
UP artifacts it should be a section in the Vision artifact (which is described in
the next chapter).

For example:

Actor Goal Actor Goal

Cashier process sales
process rentals
handle returns

System
Administra-
tor

add users
modify users
delete users

 cash in
cash out
�

 manage security
manage system tables
�

Manager start up
shut down
�

Sales Activ-
ity System

analyze sales and per-
formance data

� � � �

The Sales Activity System is a remote application that will frequently request
sales data from each POS node in the network.

Project Planning Dimension

In practice, this list has additional columns for priority, effort, and risk; this is
briefly covered in Chapter 36.

The Messy Reality

This list looks neat, but the reality of its creation is anything but. Lots of
brain-storming and thrashing about in a requirements workshop goes on.
Consider the earlier example that illustrated applying the EBP rule to the "log
in" goal. During the workshop while creating this list the cashier may offer
"log in" as one of the user goals. The system analyst digs deeper and raises the
level of the

65

66

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

goal beyond the low-level mechanism of logging in (the cashier was probably
thinking of using a dialog box on a GUI) up to the level of "identify and authen-
ticate user." Yet, the analyst then realizes it does not pass the EBP guideline,
and discards it as a user goal. Of course, the reality is even somewhat different
than this because an experienced analyst has a set of heuristics from past expe-
rience or study, one of which is "user authentication is seldom an EBP," and so is
likely to have filtered this out quickly.

Primary Actor and User Goals Depend on System Boundary

Why is the cashier, and not the customer, the primary actor in the use case Pro-
cess Sale? Why doesn't the customer appear in the actor-goal list?

The answer depends on the system boundary of the system under design, as
illustrated in Figure 6.1. If viewing the enterprise or checkout service as an
aggregate system, the customer is a primary actor, with the goal of getting goods
or services and leaving. However, from the viewpoint of just the POS system
(which is the choice of system boundary for this case study), it services the goal
of the cashier (and the store) to process the customer's sale.

Figure 6.1 Primary actors and goals at different system boundaries.

Actors and Goals via Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify
external events. What are they, where from, and why? Often, a group of events
belong to the same EBP-level goal or use case. For example:

Goal: Process sales

Cashier

Customer

POS System

Checkout Service

Goal: Buy items

Enterprise Selling Things

Sales Tax
Agency

Goal: Collect
taxes on sales Sales Activity

System

Goal: Analyze sales
and performance data

CONGRATULATIONS: USE CASES HAVE BEEN WRITTEN, AND ABE IMPERFECT

External Event From Actor Goal

enter sale line item Cashier process a sale

enter payment Cashier or Customer process a sale

�

Step 4: Define Use Cases

In general, define one EBP-level use case for each user goal. Name the use case
similar to the user goal�for example, Goal: process a sale; Use Case: Process
Sale.

Also, name use cases starting with a verb.

A common exception to one use case per goal is to collapse CRUD (create,
retrieve, update, delete) separate goals into one CRUD use case, idiomatically
called Manage <X>. For example, the goals "edit user," "delete user," and so forth
are all satisfied by the Manage Users use case.

"Define use cases" has several levels of effort, ranging from a few minutes to
simply record names, up to weeks to write fully dressed versions. The later UP
process section of this chapter puts this work�when and how much�in the
context of iterative development and the UP.

6.10 Congratulations: Use Cases Have Been Written, and Are
Imperfect

The Need for Communication and Participation

The NextGen POS team is writing use cases in multiple requirements work-
shops over a series of short development iterations, incrementally adding to the
set, and refining and adapting based on feedback. Subject matter experts, cash-
iers, and programmers actively participate in the writing process. There are no
intermediaries between the cashiers, other users, and the developers; rather,
there is direct communication.

Good, but not good enough. Written requirement specifications give the illusion
of correctness; they are not. The use cases and other requirements still will not
be correct�guaranteed. They will lack critical information and contain wrong

67

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

statements. The solution is not the "waterfall" process attitude of trying harder
to record requirements perfect and complete at the start, although of course we
do the best we can in the time available. But it will never be enough.
A different approach is required. A large part of this is iterative development,
but something else is needed: ongoing personal communication. Continual�
daily�close participation and communication between the developers and
someone who understands the domain and can make requirement decisions.
Someone the programmers can walk up to in a matter of seconds and get clarifi-
cation, whenever a question arises. For example, the XP practices [Beck00]
con-tain an excellent recommendation: User full-time on the project, in the
project room.

6.11 Write Use Cases in an Essential Ill-Free Style

New and Improved! The Case for Fingerprinting

Investigating and asking about goals rather than tasks and procedures encour-
ages a focus on the essence of the requirements�the intent behind them. For
example, during a requirements workshop, the cashier may say one of his goals
is to "log in." The cashier was probably thinking of a GUI, dialog box, user ID,
and password. This is a mechanism to achieve a goal, rather than the goal itself.
By investigating up the goal hierarchy ("What is the goal of that goal?"), the sys-
tem analyst arrives at a mechanism-independent goal: "identify myself and get
authenticated," or an even higher goal: "prevent theft ...".
This discovery process can open up the vision to new and improved solutions.
For example, keyboards and mice with biometric readers, usually for a finger-
print, are now common and inexpensive. If the goal is "identification and
authentication" why not make it easy and fast, using a biometric reader on the
keyboard? But properly answering that question involves some usability analy-
sis work as well, such as knowing the typical users' profiles. Are their fingers
covered in grease? Do they have fingers?

Essential Style Writing

This idea has been summarized in various use case guidelines as "keep the user
interface out; focus on intent" [Cockburn0l]. Its motivation and notation has
been most fully explored by Larry Constantine in the context of creating better
user interfaces (UIs) and doing usability engineering [Constantine94, CL99].
Constantine calls the writing style essential when it avoids UI details and
focuses on the real user intent.5

5. The term comes from "essential models" in Essential Systems Analysis |MP84|.

68

WRITE USE CASES IN AN ESSENTIAL UI-FREE STYLE

In an essential writing style, the narrative is expressed at the level of the user's
intentions and system's responsibilities rather than their concrete actions. They
remain free of technology and mechanism details, especially those related to the
UI.

Write use cases in an essential style; keep the user interface out and focus on
actor intent.

All the previous example use cases in this chapter, such as Process Sale, were
written aiming towards an essential style.
Note that the dictionary defines goal as a synonym for intention [MW89], illus-
trating the connection between the essential style idea of Constantine and the
goal-oriented viewpoint previously stressed in this chapter. Indeed, many actor
intention steps in an essential use case can also be characterized as subfunction
goals.

Contrasting Examples

Essential Style

Assume that the Manage Users use case requires identification and authentica-
tion. The Constantine-inspired essential style uses the two-column format.
However, it can be written in one column.

Actor Intention
1. Administrator identifies self.
3. . . .

System Responsibility
2. Authenticates identity.

In the one-column format this is shown as:

1. Administrator identifies self.
2. System authenticates identity.
3. . . .

The design solution to these intentions and responsibilities is wide open:
bio-metric readers, graphical user interfaces (GUIs), and so forth.

Concrete Style�Avoid During Early Requirements Work

In contrast, there is a concrete use case style. In this style, user interface deci-
sions are embedded in the use case text. The text may even show window screen

69

6.12 Actors

70

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

shots, discuss window navigation, GUI widget manipulation and so forth. For
example:

1. Adminstrator enters ID and password in dialog box (see Picture 3).
2. System authenticates Adminstrator.
3. System displays the "edit users" window (see Picture 4).
4. . . .

These concrete use cases may be useful as an aid to concrete or detailed GUI
design work during a later step, but they are not suitable during the early
requirements analysis work. During early requirements work, "keep the user
interface out�focus on intent."

An actor is anything with behavior, including the system under discussion (SuD)
itself when it calls upon the services of other systems.6 Primary and supporting
actors will appear in the action steps of the use case text. Actors are not only
roles played by people, but organizations, software, and machines. There are
three kinds of external actors in relation to the SuD:
� Primary actor�has user goals fulfilled through using services of the SuD.

For example, the cashier.
) Why identify? To find user goals, which drive the use cases.

� Supporting actor�provides a service (for example, information) to the
SuD. The automated payment authorization service is an example. Often a
computer system, but could be an organization or person.

) Why identify? To clarify external interfaces and protocols.
� Offstage actor�has an interest in the behavior of the use case, but is not

primary or supporting; for example, a government tax agency.
) Why identify? To ensure that all necessary interests are

identified and satisfied. Offstage actor interests are sometimes
subtle or easy to miss unless these actors are explicitly named.

6. This was a refinement and improvement to alternate definitions of actors, including
those in early versions of the UML and UP [Cockburn97]. Older definitions inconsis-
tently excluded the SuD as an actor, even when it called upon services of other sys-
tems. All entities may play multiple roles, including the SuD.

6.13 Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use cases can
actors, and the relationships between them (see Figure 6.2)

Figure 6.2 Partial use case context diagram.

Use case diagrams and use case relationships are secondary in use case work.
Use cases are text documents. Doing use case work means to write text.

A common sign of a novice (or academic) use-case modeler is a preoccupation
with use case diagrams and use case relationships, rather than writing text.
World-class use case experts such as Anderson, Fowler, Cockburn, among oth-
ers, downplay use case diagrams and use case relationships, and instead focus
on writing. With that as a caveat, a simple use case diagram provides a succinct

71

USE CASE DIAGRAMS

NextGen

Manage Users

. . .

Cashier

System
Administrator

actor

use case

communicationsystem boundary

Handle Returns
Payment

Authorization
Service

«actor»
Tax Calculator

«actor»
Accounting

System

alternate
notation for
a computer
system actor

Process Rental

«actor»
HR System

Cash In

Process Sale

«actor»
Sales Activity

System

Manage Security

Analyze Activity

72 6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

visual context diagram for the system, illustrating the external actors and how
they use the system.

Suggestion

 Draw a simple use case diagram in conjunction with an actor-goal list.

A use case diagram is an excellent picture of the system context; it makes a good
context diagram, that is, showing the boundary of a system, what lies outside
of it, and how it gets used. It serves as a communication tool that summarizes
the behavior of a system and its actors. A sample partial use case context dia-
gram for the NextGen system is shown in Figure 6.2.

Diagramming Suggestions

Figure 6.3 offers some diagram advice. Notice the actor box with the symbol
«actor». This symbol is called a UML stereotype; it is a mechanism to catego-
rize an element in some way. A stereotype name is surrounded by guillemets
symbols�special single-character brackets (not "«" and "»") most widely
known by their use in French typography to indicate a quote.

Figure 6.3 Notation suggestions.

NextGen

Process Sale

. . .
Cashier

Show computer system actors
with an alternate notation to
human actors.

primary actors on
the left

supporting actors
on the right

For a use case context
diagram, limit the use cases to
user-goal level use cases.

«actor»
Payment

Authorization
Service

Figure 6.4 Alternate actor notation.

A Caution on Over-Diagramming

To reiterate, the important use case work is to write text, not diagram or focus
on use case relationships. If an organization is spending many hours (or worse,
days) working on a use case diagram and discussing use case relationships,
rather than focussing on writing text, relative effort has been misplaced.

6.14 Requirements in Context and Low-Level Feature Lists

As implied by the title of the book Uses Cases: Requirements in Context [GK00], a
key motivation of the use case idea is the consideration and organization of
requirements in the context of the goals and scenarios of using a system. That's
a good thing�it improves cohesion and comprehension. However, use cases are
not the only necessary requirements artifact. Some non-functional require-
ments, domain rules and context, and other hard-to-place elements are better
captured in the Supplementary Specification, which is described in the next
chapter.

One idea behind use cases is to replace detailed, low-level feature lists (which
were common in traditional requirements methods) with use cases (with some
exceptions). These lists tended to look as follows, usually grouped into func-
tional areas:

ID Feature

FEAT1 .9 The system shall accept entry of item identifiers.

73

REQUIREMENTS IN CONTEXT AND LOW-LEVEL FEATURE LISTS

To clarify, some prefer to highlight external computer system actors with an
alternate notation, as illustrated in Figure 6.4.

NextGen

Process Sale

«system»
Payment

Authorization
Service

...

«actor»
Payment

Authorization
Service

Some UML alternatives to
illustrate external actors that
are other computer systems.

The class box style can be
used for any actor, computer or
human. Using it for computer
actors provides visual
distinction.

Payment
Authorization

Service

74

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

ID Feature

� �

FEAT2.4 The system shall log credit payments to the accounts receivable
system.

Such detailed lists of low-level features are somewhat usable. However, the com-
plete list is not a half-page; more likely it is dozens or a hundred pages. This
leads to some drawbacks, which use cases help address. These include:

� Long, detailed function lists do not relate the requirements in a cohesive
context; the different functions and features increasingly appear like a dis
jointed "laundry list" of items. In contrast, use cases place the requirements
in the context of the stories and goals of using the system.

� If both use case and detailed feature lists are used, there is duplication.
More work, more volume to write and read, more consistency and synchroni
zation problems.

Suggestion

 Strive to replace detailed, low-level feature lists with use cases.

High-Level System Feature Lists Are Acceptable

It is common and useful to summarize system functionality with a terse,
high-level feature list called system features in a Vision document. In contrast to
100 pages of low-level, detailed features, a system features list tends to include
only a few dozen items. The list provides a very succinct summary of system
functionality, independent of the use case view. For example:

Summary of System Features

� sales capture

� payment authorization (credit, debit, check)

� system administration for users, security, code and constants tables, and so on

� automatic offline sales processing when external components fail

� real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services

� definition and execution of customized "pluggable" business rules at fixed, common points in the
processing scenarios

� �
This is explored in the next chapter.

USE CASES ARE NOT OBJECT-ORIENTED

When Are Detailed Feature Lists Appropriate?

Sometimes use cases do not really fit; some applications call out for a
feature-driven viewpoint. For example, application servers, database products,
and other middleware or back-end systems need to be primarily considered
and evolved in terms of features ("We need XML support in the next release").
Use cases are not a natural fit for these applications or the way they need to
evolve in terms of market forces.

6.15 Use Cases Are Not Object-Oriented

There is nothing object-oriented about use cases; one is not doing object-oriented
analysis if writing use cases. This is not a defect, but a point of clarification.
Indeed, use cases are a broadly applicable requirements analysis tool that can
be applied to non-object-oriented projects, which increases their usefulness as a
requirements method. However, as will be explored, use cases are a pivotal
input into classic OOA/D activities.

6.16 Use Cases Within the UP

Use cases are vital and central to the UP, which encourages use-case driven
development. This implies:
� Requirements are primarily recorded in use cases (the Use-Case Model);

other requirements techniques (such as functions lists) are secondary, if
used at all.

� Use cases are an important part of iterative planning. The work of an itera
tion is�in part�defined by choosing some use case scenarios, or entire use
cases. And use cases are a key input to estimation.

� Use-case realizations drive the design. That is, the team designs collabo
rating objects and subsystems in order to perform or realize the use cases.

� Use cases often influence the organization of user manuals.
The UP distinguishes between system and business use cases. System use
cases are what have been examined in this chapter, such as Process Sale. They
are created in the Requirements discipline, and are part of the Use-Case Model.
Business use cases are less commonly written. If done, they are created in the
Business Modeling discipline as part of a large-scale business process
reengi-neering effort, or to help understand the context of a new system in the
busi-ness. They describe a sequence of actions of a business as a whole to fulfill a
goal of a business actor (an actor in the business environment, such as a
customer or supplier). For example, in a restaurant, one business use case is
Serve a Meal.

75

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Use Cases and Requirements Specification Across the Iterations

This section reiterates a key idea in the UP and iterative development: The tim-
ing and level of effort of requirements specification across the iterations. Table
6.1 presents a sample (not a recipe) which communicates the UP strategy of how
requirements are developed.
Note that a technical team starts building the production core of the system
when only perhaps 10% of the requirements are detailed, and in fact, there is a
deliberate delay in continuing with concerted requirements work until near the
end of the first elaboration iteration.
This is the key difference in iterative development to a waterfall process: Pro-
duction-quality development of the core of a system starts quickly, long before
all the requirements are known.

Comments and Level of Requirements Effort Discipline Artifact
Incep
1 week

Elab 1
4 weeks

Elab 2
4 weeks

Elab 3
3 weeks

Elab 4
3 weeks

Requirements Use-Case
Model

2-day require-
ments work-
shop. Most use
cases identified
by name, and
summarized in a
short paragraph.
Only 10% writ-
ten in detail.

Near the end of
this iteration,
host a 2-day
requirements
workshop.
Obtain insight
and feedback
from the imple-
mentation work,
then complete
30% of the use
cases in detail.

Near the end of
this iteration,
host a 2-day
requirements
workshop.
Obtain insight
and feedback
from the imple-
mentation work,
then complete
50% of the use
cases in detail.

Repeat, com-
plete 707 of all
use cases in
detail.

Repeal with the
goal of 80-90% of
the use cases
clarified and
written in detail.
Only a small por-
tion of these
have been built
in elaboration;
the remainder
are done in con-
struction.

Design Design Model none Design for a
small set of high-
risk architectur-
ally significant
requirements.

repeat repeat Repeat. The high
risk and archi-
tecturally signifi-
cant aspects
should now be
stabilized.

Implementa-
tion

Implementa-
tion Model
(code, etc.)

none Implement these. Repeat. 5% of the
final system is
built.

Repeat. 10% of
the final system
is built.

Repeat. 15% of
the final system
is built.

Project Man-
agement

SW Develop-
ment Plan

Very vague esti-
mate of total
effort.

Estimate starts
to take shape.

a little better... a little bettor... Overall project
duration, major
milestones,
effort, and cost
estimates can
now be ralionally
committed to.

Table 6.1 Sample requirements effort across the early iterations; this is not a
recipe.

76

USE CASES WITHIN THE UP

Observe that near the end of the first iteration of elaboration, there is a second
requirements workshop, during which perhaps 30% of the use cases are written
in detail. This staggered requirements analysis benefits from the feedback of
having built a little of the core software. The feedback includes user evaluation,
testing, and improved "knowing what we don't know." That is, the act of building
software rapidly surfaces assumptions and questions that need clarification.

Timing of UP Artifact Creation

Table 6.2 illustrates some UP artifacts, and an example of their start and refine-
ment schedule. The Use-Case Model is started in inception, with perhaps only
10% of the use cases written in any detail. The majority are incrementally writ-
ten over the iterations of the elaboration phase, so that by the end of elabora-
tion, a large body of detailed use cases and other requirements (in the
Supplementary Specification) are written, providing a realistic basis for estima-
tion through to the end of the project.

Discipline Artifact
Iteration->

Incep.
I1

Elab.
El. .En

Const.
CL..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 6.2 Sample UP artifacts and timing. s - start; r - refine

Use Cases Within Inception

The following discussion expands on the information in Table 6.1.

Not all use cases are written in their fully dressed format during the inception
phase. Rather, suppose there is a two-day requirements workshop during the
early NextGen investigation. The earlier part of the day is spent identifying
goals and stakeholders, and speculating what is in and out of scope of the
project. An actor-goal-use case table is written and displayed with the computer
projector. A use case context diagram is started. After a few hours, perhaps 20
user goals (and thus, user goal level use cases) are identified, including Process

77

78

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Sale, Handle Returns, and so on. Most of the interesting, complex, or risky use
cases are written in brief format; each averaging around two minutes to write.
The team starts to form a high-level picture of the system's functionality.

After this, 10% to 20% of the use cases that represent core complex functions, or
which are especially risky in some dimension, are rewritten in a fully dressed
format; the team investigates a little deeper to better comprehend the magni-
tude, complexities, and hidden demons of the project, through a small sample of
interesting use cases. Perhaps this means two use cases: Process Sale and Han-
dle Returns.

A requirements management tool that integrates with a word processor is used
for the writing, and the work is displayed via a projector while the team collabo-
rates on the analysis and writing. The Stakeholders and Interests lists are writ-
ten for these use cases, to discover more subtle (and perhaps costly) functional
and key non-function requirements�or system qualities�such as for reliability
or throughput.

The analysis goal is not to exhaustively complete the use cases, but spend a few
hours to obtain some insight.

The project sponsor needs to decide if the project is worth significant investiga-
tion (that is, the elaboration phase). The inception work is not meant to do that
investigation, but to obtain low-fidelity (and admittedly error-prone) insights
regarding scope, risk, effort, technical feasibility, and business case, in order to
decide to move forward, where to start if they do, or if to stop.

Perhaps the NextGen project inception step lasts five days. The combination of
the two day requirements workshop and its brief use case analysis, and other
investigation during the week, lead to the decision to continue on to an elabora-
tion step for the system.

Use Cases Within Elaboration

The following discussion expands on the information in Table 6.1.

This is a phase of multiple timeboxed iterations (for example, four iterations) in
which risky, high-value, or architecturally significant parts of the system are
incrementally built, and the "majority" of requirements identified and clarified.
The feedback from the concrete steps of programming influences and informs
the team's understanding of the requirements, which are iteratively and
adap-tively refined. Perhaps there is a two-day requirements workshop in each
iteration�four workshops. However, not all use cases are investigated in each
workshop. They are prioritized; early workshops focus on a subset of the most
important use cases.

Each subsequent short workshop is a time to adapt and refine the vision of the
core requirements, which will be unstable in early iterations, and stabilizing in
later ones. Thus, there is an iterative interplay between requirements discovery,
and building parts of the software.

CASE STUDY: USE CASES IN THE NEXTGEN INCEPTION PHASE

During each requirements workshop, the user goals and use case list are
refined. More of the use cases are written, and rewritten, in their fully dressed
format. By the end of elaboration, "80-90%" of the use cases are written in
detail. For the POS system with 20 user goal level use cases, 15 or more of the
most complex and risky should be investigated, written, and rewritten in a fully
dressed format.

Note that elaboration involves programming parts of the system. At the end of
this step, the NextGen team should not only have a better definition of the use
cases, but some quality executable software.

Use Cases Within Construction

The construction step is composed of timeboxed iterations (for example, 20 itera-
tions of two weeks each) that focus on completing the system, once the risky and
core unstable issues have settled down in elaboration. There will still be some
minor use case writing and perhaps requirements workshops, but much less so
than in elaboration. By this step, the majority of core functional and non-func-
tional requirements should have iteratively and adaptively stabilized. That does
not mean to imply requirements are frozen or investigation finished, but the
degree of change is much lower.

6.17 Case Study: Use Cases in the NextGen Inception Phase

As described in the previous section, not all use cases are written in their fully
dressed form during inception. The Use-Case Model at this phase of the case
study could be detailed as follows:

Fully Dressed Casual Brief

Process Sale
Handle Returns

Process Rental
Analyze Sales Activity
Manage Security
�

Cash In
Cash Out
Manage Users
Start Up
Shut Down
Manage System Tables
�

6.18 Further Readings

The most popular use-case guide, translated into several languages, is Writing
Effective Use Cases [Cockburn0l].7 This has emerged with good reason as the

79

80

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

most widely read and followed use-case book and is therefore recommended as a
primary reference. This introductory chapter is consequently based on and con-
sistent with its content. Suggestion: Do not be put off the book by the author's
use of icons for different use case levels, or the early emphasis on levels and use
case taxonomy. The icons are optional and minor. And although the discussion of
levels and goals may at first seem a diversion to those new to use cases, those
who have worked with them for some time appreciate that the level and scope of
use cases are key practical issues, because their misunderstanding is a common
source of complication in use-case modeling.
"Structuring Use Cases with Goals" [Cockburn97] is the most widely cited paper
on use cases, available online at www.usecases.org.
Use Cases: Requirements in Context [GK00] is another useful text. It emphasizes
the important viewpoint�as the title states�that use cases are not just
another requirements artifact, but that they are the central vehicle that drives
requirements work and information.
Another worthwhile read is Applying Use Cases: A Practical Guide [SW98],
written by an experienced use case teacher and practitioner that understand
and communicate how to apply use cases in an iterative lifecycle.

7. Note that Cockburn rhymes with slow burn.

UP ARTIFACTS AND PROCESS CONTEXT

6.19 UP Artifacts and Process Context

As illustrated in Figure 6.5, use cases influence many UP artifacts.

Figure 6.5 Sample UP artifact influence.

81

82

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

In the UP, use case work is a requirements discipline activity which could be initiated during
a requirements workshop. Figure 6.6 offers suggestions on the time and space for doing
this work.

Figure 6.6 Process and setting context.

January February

Use Case: Capture a Sale
. . .
Main Success Scenario:
1. ...
2. ...
3. ...
Extensions:

Use Case: Handle Returns
. . .
Main Success Scenario:
1. ...
2. ...
3. ...
Extensions:

When
Once during inception. Short; do not try to
define or polish all requirements.

Several times during elaboration iterations.

Where
At a requirements workshop.

Who
Many, including, end users and developers, will play
the role of requirements specifier, helping to write
use cases.

Led by system analyst, who is responsible for
requirements definition.

How: Tools
Software:

For use case text, use a web-enabled requirements tool
that integrates with a popular word processor.

For use case diagrams, a UML CASE tool.
Hyperlink the use cases; present them on the project

website.

Hardware: Use two projectors attached to dual video cards
and set the display width double, to improve the
spaciousness of the drawing area or display 2 adjacenct
word processor windows .

Developer

Customer
System
Analyst

End User

Two adjacent projections.

Software
Architect

Chapter 7

IDENTIFYING OTHER
REQUIREMENTS

When ideas fail, words come in very handy.

�Johann Wolfgang von Goethe

Objectives

Write a Supplementary Specification, Glossary, and Vision.
Compare and contrast system features with use cases. Relate the
Vision to other artifacts, and to iterative development. Define
quality attributes.

Introduction

It is not sufficient to write use cases. There are other kinds of requirements that
need to be identified, such as documentation, packaging, supportability, licens-
ing, and so forth. These are captured in the Supplementary Specification.
The Glossary captures terms and definitions; it can also play the role of a data
dictionary.
The Vision summarizes the "vision" of the project. It serves to tersely communi-
cate the big ideas regarding why the project was proposed, what the problems
are, who the stakeholders are, what they need, and what the proposed solution
looks like.
To quote:

The Vision defines the stakeholders' view of the product to be
developed, specified in terms of the stakeholders' key needs and

83

7 - IDENTIFYING OTHER REQUIREMENTS

features. Containing an outline of the envisioned core require-
ments, it provides the contractual basis for the more detailed
technical requirements [RUP].

7.1 NextGen POS Examples

The purpose of the following examples is not to present an exhaustive Vision,
Glossary, or Supplementary Specification, as some of the sections�although
useful for a project�are not relevant to the learning objectives.1 The book's goal
is core skills in object design, use case requirements analysis, and object-ori-
ented analysis, not POS problems or Vision statements. Therefore, only some
sections are briefly touched upon in order to make connections between prior
and future work, highlight noteworthy issues, provide a feel for the contents,
and move forward quickly.

7.2 NextGen Example: (Partial) Supplementary Specification

Supplementary Specification

Revision History

Version Date Description Author
Inception draft Jan 10, 2031 First draft. To be refined primarily during elabora-

tion.
Craig Larman

Introduction

This document is the repository of all NextGen POS requirements not captured in the use cases.

Functionality

(Functionality common across many use cases)
Logging and Error Handling Log all errors to
persistent storage. Pluggable Business Rules
At various scenario points of several use cases (to be defined) support the ability to customize the func-
tionality of the system with a set of arbitrary rules that execute at that point or event.
Security
All usage requires user authentication.

1. Scope creep is not only a problem in requirements, but in writing about requirements.

84

NEXTGEN EXAMPLE: (PARTIAL) SUPPLEMENTARY SPECIFICATION

Usability

Human Factors
The customer will be able to see a large-monitor display of the POS.Therefore:
� Text should be easily visible from 1 meter.

� Avoid colors associated with common forms of color blindness.

Speed, ease, and error-free processing are paramount in sales processing, as the buyer wishes to leave
quickly, or they perceive the purchasing experience (and seller) as less positive.
The cashier is often looking at the customer or items, not the computer display. Therefore, signals and
warnings should be conveyed with sound rather than only via graphics.

Reliability

Recoverability
If there is failure to use external services (payment authorizer, accounting system, ...) try to solve with a
local solution (e.g., store and forward) in order to still complete a sale. Much more analysis is needed
here...

Performance

As mentioned under human factors, buyers want to complete sales processing very quickly. One potential
bottleneck is external payment authorization. Our goal is to achieve authorization in less than 1 minute,
90% of the time.

Supportability

Adaptability
Different customers of the NextGen POS have unique business rule and processing needs while pro-
cessing a sale. Therefore, at several defined points in the scenario (for example, when a new sale is initi-
ated, when a new line item is added) pluggable business rule will be enabled.
Configurability
Different customers desire varying network configurations for their POS systems, such as thick versus
thin clients, two-tier versus N-tier physical layers, and so forth. In addition, they desire the ability to modify
these configurations, to reflect their changing business and performance needs. Therefore, the system
will be somewhat configurable to reflect these needs. Much more analysis is needed in this area to dis-
cover the areas and degree of flexibility, and the effort to achieve it.

Implementation Constraints

NextGen leadership insists on a Java technologies solution, predicting this will improve long-term porting
and supportability, in addition to ease of development.

Purchased Components

� Tax calculator. Must support pluggable calculators for different countries.

Free Open Source Components

In general, we recommend maximizing the use of free Java technology open source components on this
project.

85

86

7 - IDENTIFYING OTHER REQUIREMENTS

Although it is premature to definitively design and choose components, we suggest the following as likely
candidates:
� JLog logging framework
� �

Interfaces

Noteworthy Hardware and Interfaces
� Touch screen monitor (this is perceived by operating systems as a regular monitor, and the touch

gestures as mouse events)

� Barcode laser scanner (these normally attach to a special keyboard, and the scanned input is per
ceived in software as keystrokes)

� Receipt printer

� Credit/debit card reader

� Signature reader (but not in release 1)

Software Interfaces
For most external collaborating systems (tax calculator, accounting, inventory, ...) we need to be able to
plug in varying systems and thus varying interfaces.

Domain (Business) Rules

ID Rule Changeability Source
RULE1 Signature required for credit payments. Buyer "signature" will

continue to be required,
but within 2 years most
of our customers want
signature capture on a
digital capture device,
and within 5 years we
expect there to be
demand for support of
the new unique digital
code "signature" now
supported by USA law.

The policy of virtually
all credit authorization
companies.

RULE2 Tax rules. Sales require added taxes. See
government statutes for current details.

High. Tax laws change
annually, at all govern-
ment levels.

law

RULE3 Credit payment reversals may only be paid as
a credit to the buyer's credit account, not as
cash.

Low credit
authorization company
policy

RULE4 Purchaser discount rules. Examples:
Employee� 20% off. Preferred
Customer� 1 0% off. Senior� 15%
off.

High. Each retailer
uses different rules.

Retailer policy.

NEXTGEN EXAMPLE: (PARTIAL) SUPPLEMENTARY SPECIFICATION

ID Rule Changeability Source
RULE5 Sale (transaction-level) discount

rules. Applies to pre-tax total. Examples:
10% off if total greater than $100 USD. 5% off
each Monday.
10% off all sales between 10am and 3pm
today.
Tofu 50% off from 9am-10am today.

High. Each retailer
uses different rules,
and they may change
daily or hourly.

Retailer policy.

RULE6 Product (line item level) discount
rules. Examples:
10% off tractors this week. Buy 2
veggieburgers, get 1 free.

High. Each retailer
uses different rules,
and they may change
daily or hourly.

Retailer policy.

Legal Issues

We recommend some open source components if their licensing restrictions can be resolved to allow
resale of products that include open source software.
All tax rules must, by law, be applied during sales. Note that these can change frequently.

Information in Domains of Interest

Pricing
In addition to the pricing rules described in the domain rules section, note that products have an original
price, and optionally a permanent markdown price. A product's price (before further discounts) is the per-
manent markdown price, if present. Organizations maintain the original price even if there is a permanent
markdown price, for accounting and tax reasons.
Credit and Debit Payment Handling
When an electronic credit or debit payment is approved by a payment authorization service, they are
responsible for paying the seller, not the buyer. Consequently, for each payment, the seller needs to
record monies owing in their accounts receivable, from the authorization service. Usually on a nightly
basis, the authorization service will perform an electronic funds transfer to the seller's account for the
daily total owing, less a (small) per transaction fee that the service charges.
Sales Tax
Sales tax calculations can be very complex, and regularly change in response to legislation at all levels of
government. Therefore, delegating tax calculations to third-party calculator software (of which there are
several available) is advisable. Tax may be owing to city, region, state, and national bodies. Some items
may be tax exempt without qualification, or exempt depending on the buyer or target recipient (for exam-
ple, a farmer or a child).
Item Identifiers: UPCs, EANs, SKUs, Bar Codes, and Bar Code Readers
The NextGen POS needs to support various item identifier schemes. UPCs (Universal Product Codes),
EANs (European Article Numbering) and SKUs (Stock Keeping Units) are three common identifier sys-
tems for products that are sold. Japanese Article Numbers (JANs) are a kind of EAN version.
SKUs are completely arbitrary identifiers defined by the retailer.
However, UPCs and EANs have a standards and regulatory component. See
www.adams1.com/pub/rus-sadam/upccode.html for a good overview. Also see www.uc-council.org and
www.ean-int.org.

87

7 - IDENTIFYING OTHER REQUIREMENTS

7.3 Commentary: Supplementary Specification

The Supplementary Specification captures other requirements, information,
and constraints not easily captured in the use cases or Glossary, including sys-
tem-wide "URPS+" quality attributes or requirements. Note that requirements
specific to a use case can (and probably should) be first written with the use
case, in a Special Requirements section, but some prefer to also consolidate all of
them in the Supplementary Specification.. Elements of the Supplementary
Specification could include:

� FURPS+ requirements�functionality, usability, reliability,
performance,
and supportability

� reports

� hardware and software constraints (operating and networking systems, ...)

� development constraints (for example, process or development tools)

� other design and implementation constraints

� internationalization concerns (units, languages, ...)

� documentation (user, installation, administration) and help

� licensing and other legal concerns

� packaging

� standards (technical, safety, quality)

� physical environment concerns (for example, heat or vibration)

� operational concerns (for example, how do errors get handled, or how often
to do backups?)

� domain or business rules

� information in domains of interest (for example, what is the entire cycle of
credit payment handling?)

Constraints are not behaviors, but some other kind of restriction on the design
or project. They are also requirements, but are commonly called "constraints" to
emphasize their restrictive influence. For example:

Must use Oracle (we have a licensing arrangement with them).
Must run on Linux (it will lower cost).

88

COMMENTARY: SUPPLEMENTARY SPECIFICATION

Suggestion

Early design decisions and constraints ("premature elaboration") are almost
always a bad idea, so it is worth being suspicious and challenging of these,
especially during the inception phase when very little has been carefully
analyzed. Some constraints are imposed for unavoidable reasons, such as a
legal restriction or an existing external system interface that must be
invoked.

Quality Attributes

Some requirements are called quality attributes [BCK98] (or "-ilities") of a
system. These include usability, reliability, and so forth. Note that these refer to
the qualities of the system, not that these attributes are necessarily of high
quality (the word is overloaded in English). For example, the quality of
support-ability might deliberately be chosen to be low if the product is not
intended to serve a long-term purpose.

They are of two types:

1. Observable at execution (functionality, usability, reliability, performance, ...)

2. Not observable at execution (supportability, testability, ...)

Functionality is specified in the use cases, as are other quality attributes related
to specific use cases (for example, the performance qualities in the Process Sale
use case).

Other system-wide FURPS+ quality attributes are described in the Supplemen-
tary Specification.

Although functionality is a valid quality attribute, in common usage, the term
"quality attribute" is most often meant to imply "qualities of the system other
than functionality." Herein, the term is likewise used. This is not exactly the
same as non-functional requirements, which is a broader term including every-
thing but functionality (for example, packaging and licensing).

When we put on our "architect hat," the system-wide quality attributes (and
thus the Supplementary Specification where one records them) are especially
interesting because�as will be introduced in Chapter 32�architectural analy-
sis and design are largely concerned with the identification and resolution of the
quality attributes in the context of the functional requirements. For example,
suppose one of the quality attributes is that the NextGen system must be quite
fault-tolerant when remote services fail. From an architectural viewpoint, that
will have an overarching influence on large-scale design decisions.

Quality attributes have interdependencies and involve trade-offs. As a simple
example in the POS, "very reliable (fault-tolerant)" and "easy to test" are in

89

90

7 - IDENTIFYING OTHER REQUIREMENTS

some opposition, because there are many subtle ways a distributed system can
fail.

Domain (Business) Rules

Domain rules [Ross97, GK00] dictate how a domain or business may operate.
They are not requirements of any one application, although an application's
requirements are often by domain rules. Company policies, physical laws, and
government laws are common domain rules.
They are commonly called business rules, which is the most common type, but
that term is limited, as some software applications are for non-business prob-
lems, such as weather simulation or military logistics. A weather simulation has
"domain rules" that influence the application requirements, related to physical
laws and relationships.
It is often useful to identify and record those domain rules that influence the
requirements, usually realized in the use cases, because they can clarify incom-
plete or ambiguous use case content. For example, in the NextGen POS, if some-
one asks if the Process Sale use case should be written with an alternative to
allow credit payments without signature capture, there is a business rule
(RULE1) that clarifies whether this will not be allowed by any credit authoriza-
tion company.

Caution

Rules are not application requirements. Do not record system features as
rules. They describe the constraints and behaviors of how the domain works,
not the application.

Information in Domains of Interest

It is often valuable for a subject matter expert to write (or provide URLs to)
some explanation of domains related to the new software system (sales and
accounting, the geophysics of underground oil/water/gas flows, ...), to provide
context and deeper insight for the development team. It may contain pointers to
important literature or experts, formulas, laws, or other references. For exam-
ple, the arcana of UPC and EAN coding schemes, and bar code symbology, must
be understood to some degree by the NextGen team.

NEXTGEN EXAMPLE: (PARTIAL) VISION

7.4 NextGen Example: (Partial) Vision

Vision

Revision History

Version Date Description Author
inception draft Jan 10, 2031 First draft. To be refined primarily during elabora-

tion.
Craig Larman

The analysis in
this example is
illustrative, but
fictitious.

Introduction

We envision a next generation fault-tolerant point-of-sale (POS) application, NextGen POS, with the
flexibility to support varying customer business rules, multiple terminal and user interface
mechanisms, and integration with multiple third-party supporting systems.

Positioning

Business Opportunity
Existing POS products are not adaptable to the customer's business, in terms of varying business
rules and varying network designs (for example, thin client or not; 2, 3, or 4 tier architectures). In
addition, they do not scale well as terminals and business increase. And, none can work in either
on-line or off-line mode, dynamically adapting depending on failures. None easily integrate with
many third-party systems. None allow for new terminal technologies such as mobile PDAs. There is
marketplace dissatisfaction with this inflexible state of affairs, and demand for a POS that rectifies
this.
Problem Statement
Traditional POS systems are inflexible, fault intolerant, and difficult to integrate with third-party
systems. This leads to problems in timely sales processing, instituting improved processes that
don't match the software, and accurate and timely accounting and inventory data to support
measurement and planning, among other concerns. This affects cashiers, store managers, system
administrators, and corporate management.
Product Position Statement
�Terse summary of who the system is for, its outstanding features, and what differentiates it from
the competition.
Alternatives and Competition...

Understand who
the players are, and
their problems.

Stakeholder Descriptions

Market Demographics...

Stakeholder (Non-User) Summary... User Summary...

Key High-Level Goals and Problems of the Stakeholders

 91

7 - IDENTIFYING OTHER REQUIREMENTS

Consolidate input
from the Actor and
Goals List, and the
Stakeholder
Interests section of
the use cases.

A one day requirements workshop with subject matter experts and other stakeholders, and surveys at several
retail outlets led to identification of the following key goals and problems:

High-Level Goal Priority Problems and Concerns Current Solutions
Fast, robust, inte-
grated sales pro-
cessing

high Reduced speed as load increases.
Loss of sales processing capability if components fail.
Lack of up-to-date and accurate information from
accounting and other systems due to non-integration
with existing accounting, inventory, and HR systems.
Leads to difficulties in measuring and
planning.
Inability to customize business rules to unique business
requirements.
Difficulty in adding new terminal or user interface
types (for example, mobile PDAs).

Existing POS products
provide basic sales
processing, but do not
address these problems.

� � � �

This may be the
Actor-Goal List

created during
use-case modeling,
or a more terse
summary.

User-Level Goals
The users (and external systems) need a system to fulfill these goals:
� Cashier: process sales, handle returns, cash in, cash out

� System administrator: manage users, manage security, manage system tables

� Manager: start up, shut down

� Sales activity system: analyze sales data

� �

User Environment...

Product Overview

Product Perspective

The NextGen POS will usually reside in stores; if mobile terminals are used, they will be in close proximity to the
store network, either inside or close outside. It will provide services to users, and collaborate with other systems, as
indicated in Figure Vision-1.

Summarized from
the use case
diagram.

Context diagrams
come in different
formats with
vary-ing detail, but.
all show the major
external actors
related to a system. Figure Vision-1. NextGen POS system context diagram

92

Cashier

System
Administrator

Store
Manager

Calls upon
services

«actor»
Sales Activity

System

NextGen POS

Cashier

System
Administrator

Store
Manager

Calls upon
services

Calls upon
services

«actor»
Payment

Authorization
Service

«actor»
Tax Calculator

«actor»
Accounting

System

«actor»
Human

Resources
System

«actor»
Inventory
System

«actor»
Sales Activity

System

COMMENTARY: VISION

Summary of Benefits

Similar to the
Actor-Goal list, this
table relates goals,
benefits, and
solutions, but at a
higher level not
solely related to use
cases.

It summarizes
the value and
differentiating
qualities of the
product.

As discussed below,
system features are
a terse format to
summarize func-
tionality.

Supporting Feature Stakeholder Benefit
Functionally, the system will provide all the common ser-
vices a sales organization requires, including sales capture,
payment authorization, return handling, and so forth.

Automated, fast point-of-sale services.

Automatic detection of failures, switching to local offline pro-
cessing for unavailable services.

Continued sales processing when exter-
nal components fail.

Pluggable business rules at various scenario points during
sales processing.

Flexible business logic configuration.

Real-time transactions with third-party systems, using
industry standard protocols.

Timely, accurate sales, accounting, and
inventory information, to support measur-
ing and planning.

� �

Assumptions and Dependencies...
Cost and Pricing... Licensing and
Installation...

Summary of System Features

� sales capture

� payment authorization (credit, debit, check)

� system administration for users, security, code and constants tables, and so forth.

� automatic offline sales processing when external components fail

� real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services

� definition and execution of customized "pluggable" business rules at fixed, common points in the
processing scenarios

�

Other Requirements and Constraints

Including design constraints, usability, reliability, performance, supportability, design constraints, docu-
mentation, packaging, and so forth: See the Supplementary Specification and use cases.

7.5 Commentary: Vision

Are We Solving the Same Problem? The Right Problem?

The Problem Statement

During early requirements work in the inception phase, collaborate to define a
terse problem statement; it will reduce the likelihood that stakeholders are try-
ing to solve slightly different problems, and is usually quickly created. Occasion-

93

94

7 - IDENTIFYING OTHER REQUIREMENTS

ally, the effort reveals fundamental differences of opinion in what the parties are
trying to achieve.
Rather than plain prose, a table format offered in the RUP templates for prob-
lem statements is:

The problem of �

affects �

the impact of which is �

a successful solution would be �

The Key High-Level Goals and Problems of the Stakeholders

This table summarizes the goals and problems at a higher level than task level
use cases, and reveals important nonfunctional and quality goals that may
belong to one use case or span many, such as:

� We need fault-tolerant sales processing.

� We need the ability to customize the business rules.

What Are the Root Problems and Goals?

It is common for stakeholders to express their goals in terms of envisioned solu-
tions, such as: "We need a full-time programmer to customize the business rules
as we change them." The solutions are sometimes perceptive, because they
understand their problem domain and options well. But sometimes stakeholder
jump to solutions that are not the most appropriate or do not address the root
underlying major problems.
Thus, the system analyst needs to investigate the problem and goal chain�as
discussed in the previous chapter on use cases and goals�in order' to learn the
underlying problems, and their relative importance and impact, in order to pri-
oritize and solve the most egregious concerns with a skillful solution.

Group Idea Facilitation Methods

Although outside the scope of this discussion, it is especially during activities
such as high-level problem definition and goal identification that creative,
investigative group work occurs. Here are some useful group facilitation tech-
niques to discover root problems and goals, and support idea generation and
pri-oritization: mind mapping, fishbone diagrams, pareto diagrams,
brainstorming, multi-voting, dot voting, nominal group process, brainwriting,
and affinity grouping. Check them out on the web. I prefer to apply several of
these during

COMMENTARY: VISION

the same workshop, to discover common problems and requirements from differ-
ent angles.

System Features�Functional Requirements

Use cases are not necessarily the only way one needs to express functional
requirements for the following reasons:

� They are detailed. Stakeholders often want a short summary that identifies
the most noteworthy functions.

� What about simply listing the use case names (Process Sale,
Handle
Returns, ...) to summarize the functionality? First, the list may still be too
long. Also, the names can hide interesting functionality stakeholders really
want to know about; that is, the level of granularity can obscure noteworthy
functions. For example, suppose that the description of automated payment
authorization functionality is embedded in the Process Sale use case. A
reader of a list of use case names cannot tell if the system will do payment
authorization. Furthermore, one may wish to group a set of use cases into
one feature (for brevity), such as System administration for users, security,
code and constants tables, and so forth.

� Some noteworthy functionality is naturally expressed as short statements
that do not conveniently map to use case names or Elementary Business
Process-level goals. It may span or be orthogonal to the use cases. For exam
ple, during the first NextGen requirements workshop, someone might say
"The system should be able to do transactions with existing third-party
accounting, inventory, and tax calculation systems." This statement of func
tionality does not represent one particular use case, but is a comfortable and
succinct way to express, record, and communicate features.

) As a stronger variation of the last point, some applications call out
primarily for a description of functionality as features; use cases
are not a natural fit. This is common, for example, with middle-
ware products such as application servers�use cases are not
really motivated. Suppose the team is considering their next
release. During a requirements discussion, people (such as mar-
keting) will say, "The next version needs EJB 2.0 entity bean sup-
port." The requirements are primarily conceived in terms of a list
of features, not use cases.

Therefore, an alternative, a complementary way to express system functions is
with features, or more specifically in this context, system features, which are
high-level, terse statements summarizing system functions. More formally, in

95

96

7 - IDENTIFYING OTHER REQUIREMENTS

the UP, a system feature is "an externally observable service provided by the
system which directly fulfills a stakeholder need" [Kruchten00].

Features are things a system can do. They should pass this linguistic test:
The system shall do <feature X>.

For example:
The system shall do payment authorization.

Recall that the Vision may be used as a formal or informal contract between
development and business. System features are a mechanism to summarize in
this contract what the system will do. This is complementary to the use cases, as
the features are terse.
Features are to be contrasted with various kinds of non-functional requirements
and constraints, such as: "The system must run on Linux, must have 24/7 avail-
ability, and must have a touch-screen interface." Note that these fail the linguis-
tic test.
At times, the admonition "an externally observable service..." is difficult to
decide upon. For example, should the following be a system feature:

The system shall do transactions with third-party accounting,
inventory, human resource, and tax calculation systems.

It is a kind of behavior, and probably noteworthy to the stakeholders, but the
collaboration itself may not be externally visible, depending on your time frame,
and how close and where you look. Include it�fine-grained classification ques-
tions are seldom worth the worry.
Finally, note that most system features will find detailed expression in use case
text.

Notation and Organization

First and foremost, short high-level descriptions are important. One should be
able to read the system features list quickly.
It is not necessary to include the canonical "The system shall do..." or a variant
phrase, although it is common.
Here is a features example at a high level, for a large multi-system project of
which the POS is just one element:

COMMENTARY: VISION

The major features include:

� POS services
� Inventory management
� Web-based shopping

It is common to organize a two-level hierarchy of system features. But in the
Vision document more than two levels leads to excessive detail; the point of sys-
tem features in the Vision is to summarize the functionality, not decompose it
into a long list of fine-grained elements. A reasonable example in terms of detail:
The major features include: �

� POS services:
) sales capture

) payment authorization

) . . .

 �Inventory management:

) automatic reordering

) . . .

Sometimes, these second level features are essentially equivalent to use case
names (or user-level goals), but that is not required; features are an alternative
way to summarize functionality. Nevertheless, most system features will find
detailed expression in the use cases.
How many system features should the Vision contain?

Suggestion

A Vision with less than 50 features is desirable. If more, consider grouping
and abstracting the features.

Other Requirements in the Vision

In the Vision, system features briefly summarize functional requirements
expressed in detail in the use cases. Likewise, the Vision can summarize other
requirements (for example, reliability and usability) that are detailed in the
Special Requirements sections of use cases, and in the Supplementary Specifica-
tion (SS). However, there is some risk of unhelpful duplication. For example, the
RUP product provides templates for the Vision and SS that contain identical or
similar sections for other requirements such as usability, reliability, perfor-
mance, and so forth. Such duplication is inevitably awkward to maintain. Fur-

97

7 - IDENTIFYING OTHER REQUIREMENTS

thermore, the level of detail for similar sections (for example, performance) in
the Vision and the SS needs to be quite similar to be meaningful; that is, "essen-
tial" and "detailed" other requirement descriptions tend to be much the same,

Suggestion

For other requirements, avoid their duplication or near-duplication in both
the Vision and Supplementary Specification (SS)�and in use cases. Rather,
record them only in the SS or uses cases (if use case specific). In the Vision,
direct the reader to these for the other requirements.

This is a minor documentation nuance on the standard RUP templates that may
reduce complications. If one prefers the standard template approach, that is also
fine.

Vision, Features, or Use Cases�Which First?

It is not useful to be rigid about the order of some artifacts. While collaborating
to create different requirements artifacts, a synergy emerges in which working
on one influences and helps clarify another. Nevertheless, a suggested sequence
is:
1. Write a brief first draft of the Vision.
2. Identify user goals and the supporting use cases.
3. Write some use cases and start the Supplementary Specification.
4. Refine the Vision, summarizing information from these.

7.6 NextGen Example: A (Partial) Glossary

Glossary

Revision History

Version Date Description Author
Inception draft Jan 10, 2031 First draft. To be refined primarily during elabora-

tion.
Craig Larman

98

COMMENTARY: GLOSSARY (DATA DICTIONARY)

Definitions

Term Definition and Information Aliases
item A product or service for sale
payment
authorization

Validation by an external payment authorization service that they
will make or guarantee the payment to the seller.

payment
authorization
request

A composite of elements electronically sent to an authorization
service, usually as a char array. Elements include: store ID, cus-
tomer account number, amount, and timestamp.

UPC 12 digit code that identifies a product. Usually symbolized with a
bar code placed on products. See http://www.uc-council.org for
details.

Universal
Product Code

� �

7.7 Commentary: Glossary (Data Dictionary)

In its simplest form, the Glossary is a list of noteworthy terms and their defini-
tions. It is surprisingly common that a term, often technical or particular to the
domain, will be used in slightly different ways by different stakeholders; this
needs to be resolved to reduce problems in communication and ambiguous
requirements.

Suggestion

Start the Glossary early. I'm reminded of an experience working with simu-
lation experts, in which the seemingly innocuous, but important, word "cell"
was discovered to have slippery and varying meanings among the group
members.

The goal is not to record all possible terms, but those that are unclear, ambigu-
ous, or which require some kind of noteworthy elaboration, such as format infor-
mation or validation rules.

Glossary as Data Dictionary

In the UP, the Glossary also plays the role of a data dictionary, a document
that records data about the data�that is, metadata. During inception the glos-
sary should be a simple document of terms and descriptions. During elabora-
tion, it may expand into a data dictionary.

99

7 - IDENTIFYING OTHER REQUIREMENTS

Term attributes could include:
� aliases
� description
� format (type, length, unit)
� relationships to other elements
� range of values
� validation rules

Note that the range of values and validation rules in the Glossary constitute
requirements with implications on the behavior of the system.

Units

As Martin Fowler underscores in Analysis Patterns [Fowler96], units (currency,
measures, ...) must be considered, especially in this age of internationalized soft-
ware applications. For example, in the NextGen system, which will hopefully be
sold to many customers in different countries, price cannot be just a raw num-
ber. It must be in a Money or Currency unit that captures the notion of varying
currencies.

Composite Terms

The Glossary is not only for atomic terms such as "product price." It can and
should include composite elements such as "sale" (which includes other ele-
ments, such as date and location), and nicknames used to describe a collection of
data transmitted between actors in the use cases. For example, in the Process
Sale use case, consider the following statement:

System sends payment authorization request to an external
Payment Authorization Service, and requests payment
approval.

"Payment authorization request" is a nickname for an aggregate of data, which
needs to be explained in the Glossary.

7.8 Reliable Specifications: An Oxymoron?

Written requirements can promote the illusion that the real requirements are
understood and well-defined, and can (early on) be used to reliably estimate and
plan the project. This illusion is more true for non-software developers; pro-

100

ONLINE ARTIFACTS AT THE PROJECT WEBSITE

grammers know from painful experience how unreliable it is. This is part of the
motivation for the opening quote by Goethe.
What really matters is building software that passes the acceptance tests
defined by the users and stakeholders, and that meets their true goals (which
are often not discovered until they are evaluating or working with the software).
Writing a Vision and Supplementary Specification is worthwhile as an exercise
in clarifying a first approximation of what is wanted, the motivation for the
product, and as a repository for the big ideas. But they are not�nor is any
requirements artifact�a reliable specification. Only writing code, testing it, get-
ting feedback, ongoing close collaboration with users and customers, and adapt-
ing, truly hit the mark.
This is not a call to abandon analysis and thinking, and just rushing to code, but
a suggestion to treat written requirements lightly, and continually�indeed,
daily�engage users.

7.9 Online Artifacts at the Project Website

Since this is a book, these examples and the preceding use cases have a static
and perhaps paper-oriented feel. Nevertheless, these should be digital artifacts
recorded only online at the project website. And instead of being plain static doc-
uments, they may be hyperlinked, or recorded in tools other than a word proces-
sor or spreadsheet. For example, the Glossary could be stored in a database
table.

7.10 Not Much UML During Inception?

The purpose of inception is to collect just enough information to establish a com-
mon vision, decide if moving forward is feasible, and if the project is worth seri-
ous investigation in the elaboration phase. As such, beyond simple UML use
case diagrams, not much diagramming is often motivated. There is more focus
in inception on understanding the basic scope and 10% of the requirements,
expressed in textual forms. In practice, and thus in this presentation, most
UML diagramming will occur in the next phase�elaboration.

7.11 Other Requirement Artifacts Within the UP

As in the prior use case chapter, Table 7.1 summarizes a sample of artifacts and
their timing. All requirements artifacts are started in inception, and primarily
worked on through elaboration.

101

7 - IDENTIFYING OTHER REQUIREMENTS

Discipline Artifact
Iteration->

Incep.
I1

Elab.
El. .En

Const.
C1..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 7.1 Sample UP artifacts and timing. s - start; r - refine

Inception

It should not be the case that these requirements artifacts are finalized in the
inception phase. Indeed, they will barely be started.

Stakeholders need to decide if the project is worth serious investigation; that
real investigation occurs during elaboration, not inception. During inception,
the Vision summarizes the project idea in a form to help decision makers deter-
mine if it is worth continuing, and where to start.

Since most requirements work occurs during elaboration, the Supplementary
Specification should be only lightly developed during inception, highlighting
noteworthy quality attributes (for example, the NextGen POS must have
recov-erability when external services fail) that expose major risks and
challenges.

Input into these artifacts could be generated during an inception phase require-
ments workshop, both through explicit consideration of its topics, and indirectly
via use case analysis. Draft, readable artifacts will not get written in the work-
shop, but afterwards by the system analyst.

Elaboration

Through the elaboration iterations, the "vision" and the Vision are refined,
based upon feedback from incrementally building parts of the system, adapting,
and multiple requirements workshops over several development iterations.

Through ongoing requirements investigation and iterative development, the
other requirements will become more clear and can be recorded in the SS. The
quality attributes (for example, reliability) identified in the SS will be key driv-

102

OTHER REQUIREMENT ARTIFACTS WITHIN THE UP

ers in shaping the core architecture that is designed and programmed during
elaboration. They may also be key risk factors that influence what gets worked
on in early iterations. For example, the NextGen POS quality requirement of cli-
ent-side recoverability if external components fail will be explored during elabo-
ration.

The majority of terms will be discovered and elaborated in the Glossary during
this phase.

By the end of elaboration, it is feasible to have use cases, a Supplementary Spec-
ification, and a Vision that reasonably reflects the stabilized major features and
other requirements to be completed for delivery. Nevertheless, the Supplemen-
tary Specification and Vision are not something to freeze and "sign off" on as a
fixed specification; adaptation�not rigidity�is a core value of iterative develop-
ment and the UP.

To clarify this "frozen sign off" comment: It is perfectly sensible�at the end of
elaboration�to form an agreement with stakeholders about what will be done
in the remainder of the project, and to make commitments (perhaps contractual)
regarding requirements and schedule. At some point (the end of elaboration, in
the UP), we need a reliable idea of "what, how much, and when." In that sense, a
formal agreement on the requirements is normal and expected. It is also neces-
sary to have a change control process (one of the explicit best practice in the UP)
so that changes in requirements are formally considered and approved, rather
than chaotic and uncontrolled change.

Rather, several ideas are implied by the "frozen sign off" comment:

� In iterative development and the UP it is understood that no matter how
much due diligence is given to requirements specification, some change is
inevitable, and should be acceptable. This change could be a late-breaking
opportunistic improvement in the system that gives its owners a competitive
advantage, or change due to improved insight.

� In iterative development, it is a core value to have continual engagement by
the stakeholders to evaluate, provide feedback, and steer the project as they
really want it. It does not benefit stakeholders to "wash their hands" of
attentive engagement by signing off on a frozen set of requirements and
waiting for the finished product, because they will seldom get what they
really needed.

Construction

By construction, the major requirements�both functional and otherwise�
should be stabilized�not finalized, but settled down to minor pertubation.
Therefore, the SS and Vision are unlikely to experience much change in this
phase.

103

7 - IDENTIFYING OTHER REQUIREMENTS

7.12 Further Readings

Vision and Supplementary Specification-like documents are not new. They are
used on many projects and described in many requirements books. Most such
books implicitly assume the waterfall attitude that the objective is to get them
detailed and correct at the beginning, and commit to them, before moving on to
design and implementation. In that sense, their traditional descriptions are not
helpful, although they otherwise provide good advice for possible sections and
their content.

Most books on software architecture include discussion of requirements analysis
for quality attributes of the application, since these quality requirements tend
to strongly influence architectural design. One example is Software Architecture
in Practice [BCK98].

Business rules get an exhaustive treatment in The Business Rule Book [Ross97].
The book presents a broad, deep, and thoroughly-considered theory of business
rules, but the method is not well-connected to other modern requirements tech-
niques such as use cases, or to iterative development.

104

UP ARTIFACTS AND PROCESS CONTEXT

7.13 UP Artifacts and Process Context

Artifact influence emphasizing the Vision, Supplementary Specification, and
Glossary are show in Figure 7.1.

Figure 7.1 Sample UP artifact influence.

105

106

7 - IDENTIFYING OTHER REQUIREMENTS

In the UP, Vision and Supplementary Specification work is a requirements discipline
activity which could be initiated during a requirements workshop, along with use case
analysis. Figure 7.2 offers suggestions on the time and space for doing this work.

Figure 7.2 Process and setting context.

January February

Problem Statement
. . .
The problem of: . . .
affects: . . .
the impact of which is: . . .
a succesful solution is: . . .

Vision Features
. . .
The system shall record sales
The system shall process
payments.
. . .

When
Once during inception. Short; do not try to
define or polish all requirements.

Several times during elaboration iterations.

Where
Started in a requirements
workshop, but usually written
afterwards.

Who
Utlimately written by the system analyst, who is
responsible for requirements definition.

The software architect is experienced in considering
quality requirements, such as reliability or
performance.

Collaboration on high-level requirements from end
users, developers and the paying or responsible
customer. Minimize intermediaries.

How: Tools
Software: A web-enabled requirements management
tool integrated with a popular word processor.

Other: Mind-maps, fishbone diagrams, and so forth
on whiteboards, for idea generation and clarification.
Use a digital camera to easily capture the results.

Hardware: Use two projectors attached to dual video
cards and set the display width double .

Developer

CustomerSystem
Analyst

End User

Two adjacent projections.

Software
Architect

