
1

Java Applications – FYI for now
Always include a class with a main method
e.g., public static void main(String args[]){ }

Huh?
public – can be invoked from another package
static – same for all instances of this class
void – does not return anything
main – the method’s name
(String args[]) – argument list (an array of Strings)
{ } – block delimiters {method definition is inside}

Comments and white space
Compiler ignores – but important to human reader
3 types of comments:
// for single line or end-of-line comment

/* for comment that may

span lines */

/** Javadoc comment (will discuss later) */

White space:
– Indent methods, structures, other meaningful units
– Leave blank lines between meaningful sections
– Insert spaces before and after operators

Errors – 2 basic types
Syntax errors – what beginners first see
– Improperly formed (or typed) source code

e.g., public cass Hello should be class
e.g., …println(“Hi); missing ” (end of string)
e.g., system.out.println(“Hi”); System

– Compiler won’t compile the source code
Important to learn to read the error messages – try it

Logic errors – a.k.a., “bugs”
– Compiler said it’s okay, but results are wrong
– Often have to fix the algorithm (the step-by-step

solution to the problem – program should translate)

Variables and memory

Every variable has:
– a name, a type, a size, and a value

Concept: name corresponds to a memory location
If primitive type (text calls “number type”) – the
actual value is stored there
If object type – just a reference to the object
stored there (actually it’s a memory address)
– The object is stored somewhere else
– Or the reference might be null

Defining variables
Must declare type for memory locations
– Compiler must know how big and how to interpret

Syntax: typeName variableName;
int x; // for integers, like 4, -125
double a, b; // for floating point numbers, like 1.25, -0.9
String s; // for references to strings, like “dog”, “cat”

Also must assign value, or compiler won’t let you use it
x = 2; // use assignment operator – looks like “equals” sign
double y = 7.3; // can initialize when declare – a good idea

And if a reference, must create an object to use
String name = “Mike”;

Rectangle box = new Rectangle();

Identifiers

Names of classes, variables, methods
Rules:
– Sequence of letters, digits, _, $ ONLY
– Must not begin with digit; must not contain spaces
– No Java reserved words

Unwritten rule: Use meaningful names.
Conventions:
– NameOfClass – begin with uppercase
– other or otherName, unless name of constant, like PI

2

Assignment

= is the assignment operator
– It does not mean “equals” (but we say it like that)

– e.g., x = 5; // means “assign 5 to x”
Now 5 is stored in the memory location called x

– e.g., y = x + 2; // assign (x + 2) to y
The value stored in x is retrieved, 2 is added to it,
and the result is stored in y

– e.g., x = x + 2; // assign (x + 2) to x
It’s okay! It doesn’t mean “x equals x+2”. Right?

Special characters

Escape sequences – start with \ (the “back slash”
character)
– \n – newline character
– \t – tab
– \” – double quotes
– \’ – single quote
– \\ – back slash itself

Experiment with it – (e.g., change Hello.java)
Note: “a string\n” vs. characters – ‘c’, ‘\n’

Standard Output, and Strings
System.out – an object of type PrintStream
– println(string) – prints string and newline
– print(string) – prints string, no newline

String – literal is delimited by quotes: “a string”
– Remember: special characters start with “\”

e.g., \n is a newline character
So println(“Hi”) is same as print(“Hi\n”)

+ concatenates: e.g., “a” + 5 + ”b” becomes “a5b”
Note: first 5 is converted to a String.

Formatted printing
Java 5: printf(“format”, object1, object2, …)
– Method of PrintStream class – so System.out has
System.out.printf(“x = %d”, x); // x is an integer

– Or use %o or %x to show same value in octal or hexadecimal
%f or %e or %g for floating point, and %s for strings
– Also control field width, precision, and other formatting
…printf(“%-9s%7.2f%n”, “Value”, v);

Complete details in java.util.Formatter
– Format dates, times, …
– Can use to create formatted String objects too:
String s = String.format(“pt: %d, %d", x, y);

Standard input, and more Strings

Actually have to read keyboard or other
input as a String (also requires exception handling)
So must “parse” string to interpret
numbers or other types
– e.g., String s1 = “426”, s2 = “93.7”;
– Then s1 can be parsed to find an int or a

double, and s2 can be parsed to find a double:
int n = Integer.parseInt(s1);
double d = Double.parseDouble(s2);

java.util.Scanner

Important Java 5 enhancement greatly simplifies
input processing
First construct a Scanner object – pass it
System.in (or other input stream, or even a string)

Scanner in = new Scanner(System.in);

Then get next string, int or double (or others)
String s = in.next();
String wholeLine = in.nextLine();
int x = in.nextInt();
double y = in.nextDouble();

See class Addition (Fig. 2.7, p. 47)

3

Arithmetic
Operators:
+, -, *, / add, subtract, multiply, divide

% modulus operator – remainder
() means whatever is inside is evaluated first
Use java.lang.Math for difficult calculations

– E.g., Math.sqrt(x), Math.cos(x), … (more later)
Precedence rules so far (will expand):

1. ()
2. *, /, %
3. +, -
4. =

Analyzing an expression

Simple decisions – using if

Do something or don’t do something …
depending on the circumstances
if (value < 0)

System.out.print(“negative”);

– Only prints if value is less than zero
Formal definition to implement decision:
if (boolean expression)

statement-to-execute; // only if expression is true

Simple boolean expressions

Relational operators: <, >, <=, >=, ==, !=
– e.g., int x=1, y=2, z=3;

x > y ?
– Lower precedence than arithmetic

x >= z – y ?
x == z + y ?
• Note not same as x = z + y // would make x be 5

Not equal: z != x + y ?
See class Comparison (Fig. 2.15, p. 57)

true

false

false

false

