Comparing objects, like Strings

e Do NOT use == to test equality

— That just compares references! For example,
String sl = “dog”;
String s2 = “DOG”.toLowerCase();

s1 == s2 /[false! — different objects
e Use equals method instead (if defined by class)

sl.equals(s2) /I true — same contents
— But not all classes define equals method. Be careful.
e Some objects (like strings) are comparable, SO
s3.compareTo(s4) //returns-1, 0, or 1

boolean variables

e A primitive type to store true or false
— €.g., boolean done = false;

iIT (1done) {

done = true;

+
e Often used just for readability:

boolean pass = grade >= 70;
iIT (pass) ...

If/else Selection Structure

Implementing 1¥/else

e General way — use if and else:
iIT (grade >= 60)
message = ‘““‘Pass’;
else
message = “Fail’’;

— Either clause can be a block —1.e., {..}
e Sometimes — use selection operator:

message = grade >= 60 ? “Pass” : “Fail’;
/[l same resultas 1 ¥/else above

- Applications are much more limited though

Nesting & indenting

e No such thing as multiple else blocks — others
actually nested inside else block

— €.0.,
iIT (grade >= 90)
message = “Excellent”;
else
iIT (grade >= 60)
message = ‘“‘Pass’;
else
message = “Fail”’;

— Gets messy, so usually else/if on same line:
else 1t (grade >= 90) ..

Nesting/indenting (cont.)

e Critical to test relations in the correct order
— Sometimes means stating the negative condition
e Also watch out for “dangling else” problems
iIT (first-level condition)
iIT (second-level condition)
do something;
else (what level?) ..
—> | this else should be indented to here

while Iteration Structure

Implementing/applying while

while (boolean expression)
operation; // or a block, delimited by { }

e Can be used for counter-controlled loops:
Iint counter = O; /[initialize
while (counter < 10) { // compare to limit
System.out.printiIn(counter*counter);
counter = counter + 1; //increment

}
— Must: (1) initialize, (2) check against limit, (3) increment
— See related version of (Fig. 4.6, pp. 119-121)

Applying whi le (cont.)

e Processing unlimited amounts of input data

— e.Q., better (Fig. 4.9, pp. 127-128) —
reads grades until sentinel entered by user

e Special note: watch out for endless loops!

— 1.e., boolean expression never becomes false
e Use ctri~C at command line to interrupt

— But some situations call for it — in such cases:
while (true) ... /lintention is clear this way

Notes about type conversions

e Automatically applies to promotions only:
— e.g., int n = 5; double d = n; //okay
e N is “promoted” to doub I e before assignment happens

— e.g.,,int n = 5; double d = n/2.0; // okay
e N promoted to double before division; result is double
e Must “cast” to force other conversions:
— e.¢., double d = 5.; int n = d; //error
double d = 5.; int n = (int)d; // okay
— But not all casts are legal (basically must make sense):
String s = “dog”; int n = (int)s; //error

Combining control structures

Initialize:
pass = fail =0

e Two ways only:
— Stack — In sequence

— Nest — one inside “ fomuser
other
® (Fig.
4,12, p. 134) shows
both ways

— An If/else structure
Inside a while loop

— And an If structure
In sequence after
the while loop

Aside — simple drawings

e Really just a preview of upcoming topic
e Need a Graphics object to draw on

— Any subclass of JComponent — e.g., JPanel —
can be passed one by the windowing system
¢ Inherits method: paintComponent(Graphics Q)

— See (Fig. 4.19, p. 142)
e And a window to show It —e.g., a JFrame
— See (Fig. 4.20, p. 143)

Assignment with arithmetic

e Assignment operators
eg., a += 5;
/[sameas: a = a + 5;
— Also -=, *=, /=, and %=
e Special forms for += and -=, called increment
and decrement operators, respectively

— ++iIncrementsby 1 (sameas+= 1)
—— decrements by 1 (sameas -= 1)

— e.¢. counter++; // same as counter = counter + 1;

Pre/post versions of ++ and --

e Post-increment Is not exactly the same as pre-
INncrement (same goes for decrement)

e Post version changes after used In expression
e.g., say X = 7, then
System.out.printin(x++);

would print 7
e Pre version changes before It Is used

System.out.printin(++x);
would print 8.

— In either case, x equals 8 after the print.

Operator precedence update

More Iteration structures

e Remember: 3 ways to implement “loops” in Java
— while, for, and do/while
e while loop Is most basic

— l.e., can always replace a for loop or do/while loop
with while alone
e But other forms are handy, and recommended sometimes
e Exam tip:

— Translating a loop is a favorite exam problem

for lteration Structure

(J

|n|t|aI|ze

r

—>| increment
F

< J

for purpose.:

counter-controlled loops

e Recall the 3 steps with while:

int ¢ = 0: //Initialize control variable

while (c < 10) { // continuation condition
System.out.printin(c*c);

c = c + 1: [/l Increment control variable
¥

e One for does all:
Initialize

N

C

for (int c=0; c<10; c++)
System.out.println(c*c);

Increment

for Notes

e Header requires three fields

— l.e., always two “;” — but can leave one or more blank

e Manipulate control variable in the header

— Manipulate other variables in loop body

— Also best to NOT change control variable in body
e “Increment” not limited to ++

— Can decrement too: for (int i=10; i>0; i--)

— Or use any amount: for (int i=0; i<100; i+=5)
e Scope of control variable limited to loop

— Unless it is declared outside the loop

Applying for loops

e Find the sum of even integers from 2 through 20
int total = O;
for (int num = 2; num <= 20; num += 2)
total += num;

e Print digits (0 to 9) with spaces between
for (int 1 = 0; 1 < 10; 1++)
System.out.print(i + “);
/[prints “0 1 2 .. 9~

e Use to do any operation a fixed number of times
- e.g., (Fig. 5.6, p. 167)

