
1

Modularity

Also a structured programming topic:
– Can replace a rectangle with a module

Modules contain stacked/nested structures

Java modules:
– methods (the most basic modular units)
– classes (collections of related methods)
– packages (collections of related classes)

Using methods – “invoking”

Direct translation of algorithm – e.g.,
getData();
process();

showResults();

In turn, the method process() might do:
result = calculate(x, y);

where calculate is another method, one
that returns a value based on x and y.

And so on …

static methods and variables
A.k.a. class methods and class variables
Technically, same for all instances of a class
– No particular instance (object) is involved

So instance variables have no meaning in a static context
– Access by class name, not object reference

Good for “self-contained” methods
– i.e., all necessary info is local to the method
– May not use non-static methods or variables of class

Good for shared data and instance counts
– e.g., if (Martian.count > 10) retreat();

java.lang.Math static methods

Math’s public methods are all static
– So no need to make an object first
– Invoke by class name and the dot “.” operator
Math.max(x, y) and Math.min(x, y)

max and min are overloaded – return type same as x, y
Usually double parameters and return type
double r = Math.toRadians(57.);
System.out.println(“Sine of 57 degrees is “ +

Math.sin(r));

Also two constant values: Math.PI and Math.E
Math is in java.lang – so no need to import

About constants like PI and E
final variables are “constants”
– May only assign value once; usually when declared
– More efficient code (and often programming)

Should always avoid “magic numbers”
– e.g., decipher this line of code:

cost = price * 1.0775 + 4.5;
– More typing, but worth it:

final double TAX_RATE = 0.0775;
final double SHIPPING = 4.5;
cost = price * (1. + TAX_RATE) + SHIPPING;

Class constants – final static variables
– e.g., Math.PI is declared in java.lang.Math as follows:
public static final double PI = 3.14159265358979323846;

Some String methods

Accessing sub-strings: (Note – positions start at 0, not 1)
– substring(int) – returns end of string
– substring(int, int) – returns string from first

position to just before last position
– charAt(int) – returns single char
length() – the number of characters
toUpperCase(), toLowerCase(), trim(), …
valueOf(…) – converts any type to a String
– But converting from a String more difficult – must use

specialized methods to parse

2

Note: parameters are copies
e.g., void foo(int x)

{ x = 5; } // changes copy of the value passed
So what does the following code print?
int a = 1;
foo(a);
System.out.print(“a = “ + a);
– Answer: a = 1

Same applies to “immutable objects” like Strings
String s = “APPLE”;
anyMethod(s);
System.out.print(s); // prints APPLE

But references are references
A reference is used to send messages to an object
– So the original object can change if not immutable

e.g., void foo(Rectangle x)

{ x.translate(5,5); }

// actually moves the rectangle
Copy of reference is just as useful as the original
– i.e., although methods cannot change a reference, they

can change the original object
– Moral: be careful about passing object references

Random simulations
Can use Math.random() method
– Pseudorandom double value – range 0 to almost 1
int diceValue = 1 + (int)(Math.random() * 6);

Better to use a java.util.Random object
Random generator = new Random();
int diceValue = 1 + generator.nextInt(6);

– e.g., RandomIntegers.java (Fig. 6.7, p. 221)
– And more interesting Craps.java (Fig. 6.9, pp. 225-226)

Not just for integers (and not just for dice)
double angle = 360 * generator.nextDouble();
boolean gotLucky = generator.nextBoolean();

Scope/duration of identifiers
Depends on where declared
– i.e., in which set of {}; in which “block”

Instance variables:
– Duration (“lifetime”): same as duration of object
– Scope: available throughout the class

Variables declared in method or other block
(including formal parameters):
– Duration: as long as block is being executed
– Scope: available just within the block

See Scope.java (Fig. 6.11, p. 230)

Overloading method names
Method signature is: name (parameter list)
– Can reuse a name with different parameter list

List distinguished by (1) number of parameters,
and (2) types and order of parameters
– e.g., three greeting methods (for a robot?):

void hi() { System.out.print(“Hi”); }
void hi(String name) // to greet a person by name
{ System.out.print(“Hi “ + name); }
void hi(int number) // to greet a collection of people
{ System.out.print(“Hi you “ + number); }

– Another example: MethodOverload.java (Fig. 6.13, p. 233)
Cannot distinguish just by return type though (Fig. 6.15)

Another aside –
Coloring and animating drawings

e.g., DrawSmiley.java (Fig. 6.16, p. 236)
Now let’s spice up the Car drawing
– First add a Color instance variable to class Car, and add

ways to change a Car’s position
Animation is class CarComponent’s responsibility
– Change the two Car references to instance variables
– Create Car objects the first time paintComponent is called –

might as well make their colors random
– Add animate() method – moves Cars, and uses a Thread:

try { Thread.sleep(500); }
catch(InterruptedException e) { }

And includes repeated calls to repaint() after moves
– Finally, must invoke animate() from class CarViewer

