
ModularityModularity

Also a structured programming topic:
– Can replace a rectangle with a module

Modules contain stacked/nested structures

Java modules:
– methods (the most basic modular units)
– classes (collections of related methods)
– packages (collections of related classes)

Using methods Using methods –– ““invokinginvoking””

Direct translation of algorithm – e.g.,
getData();
process();

showResults();

In turn, the method process() might do:
result = calculate(x, y);

where calculate is another method, one
that returns a value based on x and y.

And so on …

staticstatic methods and variablesmethods and variables
A.k.a. class methods and class variables
Technically, same for all instances of a class
– No particular instance (object) is involved

So instance variables have no meaning in a static context
– Access by class name, not object reference

Good for “self-contained” methods
– i.e., all necessary info is local to the method
– May not use non-static methods or variables of class

Good for shared data and instance counts
– e.g., if (Martian.count > 10) retreat();

java.lang.Mathjava.lang.Math static methodsstatic methods

Math’s public methods are all static
– So no need to make an object first
– Invoke by class name and the dot “.” operator
Math.max(x, y) and Math.min(x, y)

max and min are overloaded – return type same as x, y
Usually double parameters and return type
double r = Math.toRadians(57.);
System.out.println(“Sine of 57 degrees is “ +

Math.sin(r));

Also two constant values: Math.PI and Math.E
Math is in java.lang – so no need to import

About constants like PI and EAbout constants like PI and E
final variables are “constants”
– May only assign value once; usually when declared
– More efficient code (and often programming)

Should always avoid “magic numbers”
– e.g., decipher this line of code:

cost = price * 1.0775 + 4.5;
– More typing, but worth it:

final double TAX_RATE = 0.0775;
final double SHIPPING = 4.5;
cost = price * (1. + TAX_RATE) + SHIPPING;

Class constants – final static variables
– e.g., Math.PI is declared in java.lang.Math as follows:
public static final double PI = 3.14159265358979323846;

Some Some StringString methodsmethods

Accessing sub-strings: (Note – positions start at 0, not 1)
– substring(int) – returns end of string
– substring(int, int) – returns string from first

position to just before last position
– charAt(int) – returns single char
length() – the number of characters
toUpperCase(), toLowerCase(), trim(), …
valueOf(…) – converts any type to a String
– But converting from a String more difficult – must use

specialized methods to parse

Note: parameters are Note: parameters are copiescopies
e.g., void foo(int x)

{ x = 5; } // changes copy of the value passed
So what does the following code print?
int a = 1;
foo(a);
System.out.print(“a = “ + a);
– Answer: a = 1

Same applies to “immutable objects” like Strings
String s = “APPLE”;
anyMethod(s);
System.out.print(s); // prints APPLE

But references But references areare referencesreferences
A reference is used to send messages to an object
– So the original object can change if not immutable

e.g., void foo(Rectangle x)

{ x.translate(5,5); }

// actually moves the rectangle
Copy of reference is just as useful as the original
– i.e., although methods cannot change a reference, they

can change the original object
– Moral: be careful about passing object references

Random simulationsRandom simulations
Can use Math.random() method
– Pseudorandom double value – range 0 to almost 1
int diceValue = 1 + (int)(Math.random() * 6);

Better to use a java.util.Random object
Random generator = new Random();
int diceValue = 1 + generator.nextInt(6);

– e.g., RandomIntegers.java (Fig. 6.7, p. 221)
– And more interesting Craps.java (Fig. 6.9, pp. 225-226)

Not just for integers (and not just for dice)
double angle = 360 * generator.nextDouble();
boolean gotLucky = generator.nextBoolean();

Scope/duration of identifiersScope/duration of identifiers
Depends on where declared
– i.e., in which set of {}; in which “block”

Instance variables:
– Duration (“lifetime”): same as duration of object
– Scope: available throughout the class

Variables declared in method or other block
(including formal parameters):
– Duration: as long as block is being executed
– Scope: available just within the block

See Scope.java (Fig. 6.11, p. 230)

Overloading method namesOverloading method names
Method signature is: name (parameter list)
– Can reuse a name with different parameter list

List distinguished by (1) number of parameters,
and (2) types and order of parameters
– e.g., three greeting methods (for a robot?):

void hi() { System.out.print(“Hi”); }
void hi(String name) // to greet a person by name
{ System.out.print(“Hi “ + name); }
void hi(int number) // to greet a collection of people
{ System.out.print(“Hi you “ + number); }

– Another example: MethodOverload.java (Fig. 6.13, p. 233)
Cannot distinguish just by return type though (Fig. 6.15)

Another aside Another aside ––
Coloring and animating drawingsColoring and animating drawings

e.g., DrawSmiley.java (Fig. 6.16, p. 236)
Now let’s spice up the Car drawing
– First add a Color instance variable to class Car, and add

ways to change a Car’s position
Animation is class CarComponent’s responsibility
– Change the two Car references to instance variables
– Create Car objects the first time paintComponent is called –

might as well make their colors random
– Add animate() method – moves Cars, and uses a Thread:

try { Thread.sleep(500); }
catch(InterruptedException e) { }

And includes repeated calls to repaint() after moves
– Finally, must invoke animate() from class CarViewer

