
1

Recap: What an object can do
Defined by its interface
– Consists of public methods and public data

Accomplished by its implementation
– Includes private members and internal details of

methods
A class provides both the interface and
implementation for objects of a particular type
– Defines the public interface
– Defines the data that objects store
– Implements the methods (both public and private)

Label objects for example
Public interface – what clients need to know
– Includes accessors: public String getText()

– And mutators: public void setText(String text)

– Even constants: public static final int CENTER
Also LEFT and RIGHT – where to display the text

Implementation is in class (java.awt.)Label
– Defines the public methods – so they actually work
– Has non-public features too: text, alignment, …

Includes methods that clients don’t have to know about
Reason: these parts can change without ruining client’s work

A custom example: BankAccount
A software designer identified the need for
objects that represent bank accounts
– Part of a banking system, or personal portfolio, or …

Q: Why objects, not just numbers?
– A: bank accounts are more complex than numbers

Include data (balance, account holder information, …)
And methods (controlled ways to deposit and withdraw, …)

Idea is that other software objects will:
– Create new BankAccount objects
– Use the objects’ public features to solve problems

Notes about choosing classes
A class represents a concept from the problem domain
Name for a class – a noun that describes the concept
– e.g., geometric concepts: Point, Rectangle, Ellipse, …
– Or real life concepts: BankAccount, CashRegister, …

Lots of general types of concepts/classes:
– e.g., Actors (end in -er, -or) – do some kinds of work for you

Scanner is a good example
Random is not (better name would be RandomNumberGenerator)

– e.g., Utilities (like Math) – often just static methods/constants
– e.g., Program starters – only have a main method

Advice: don't turn actions into classes
– e.g., Paycheck is better name than ComputePaycheck

Accessor and mutator methods
Accessors – to allow access to private data
– Usually call same as variable, or getVariable

e.g., private int var; …

public int getVar() { return var; }

– Note: only if other classes need such access
Mutators – to allow changes to private data
– e.g., deposit and withdraw methods of BankAccount
– Basic mutators are usually called “set” methods

public void setVar(int x) { var = x; }

– Note: only if other classes should change the data, and
only in ways that keep the object in a valid state

Notes about this

this is an object reference – a constant an object
uses to refer to itself (“me” better reflects the concept)
e.g., print me: System.out.print(this);
Often just an implicit reference: calculate();
– Same as explicitly saying this.calculate();
– Also the case for instant variables: x ↔ this.x

See ThisTest.java (Fig. 8.4, pp. 323-324)

Has a special purpose for overloaded constructors
– See Time2.java (Fig. 8.5, pp. 325-327)

Has no meaning (so illegal to use) in a static context

2

Predicate methods
Methods that return a boolean value
– e.g., BankAccount enhancement:
public boolean isOverdrawn() {

return balance < 0;
}

Can simplify and clarify programs that use them
if (myAccount.isOverdrawn()) …

Lots of API examples
– e.g., Scanner: input.hasNextInt()
– e.g., Stack: stack.isEmpty()
– e.g., Character: Character.isDigit(aChar)

Avoid “side effects” of methods
Any externally observable data modification
e.g., modifying an explicit parameter
void transfer(double amount, Account other){

balance = balance - amount;
other.balance = other.balance + amount;

}

Unexpected output is another example
– i.e., don’t print unless that is the method’s purpose
– In fact, any printing at all might cause problems
public void printBalance() { // Not recommended

System.out.println(“Balance is $" + balance);
}

Now only works in English locale
Also relies on System.out – might not be available in GUI

Packages
Uppermost level of Java modules
– Used to bundle related classes – a good design idea

Declare in each class – package my.stuff;
Store all in same directory – ./my/stuff/

Must qualify class names to use them
– Either explicitly each time name is used – my.stuff.Thing

– Else import my.stuff.Thing;
– Or import my.stuff.*; // to get all classes in package

See text section 8.16 (and related Fig. 8.19 and Fig. 8.20)
Package access – a.k.a. “friendly” – no access modifier

Applets – an alternate approach

A way to run a program – but not an application
– No main method necessary

Need a subclass of Applet (or JApplet)
– So: class __ extends Applet (or extends JApplet)

Most web browsers know how to create a new
applet, and how to use certain Applet methods
– So, applets must be embedded in an html page
– And, to be useful, they must include at least one of the

methods the browser invokes (e.g., paint)

“Running” an Applet

The applet is started by the web browser as
soon as the web page (html file) is visited
The html file (stands for hypertext markup language)
— must have an applet tag in it:
<html> …
<applet code=AppletClassName.class

width=### height=###>
</applet> <!-- needs a closing tag too -->
… </html>

FYI: a little more html
All based on tags – which come in pairs
– e.g., italics – “a <i>stressed</i> word” – would

show on web page as “a stressed word”
– Also underline - <u>…</u>, bold - …,

subscript - _…, and so on
– Can nest like “<u>ok</u>ay then!” shows

up as “okay then!”
But wrong if not nested, like “<u>…</u>”

Best kind of tags are hyperlinks
– e.g., “my school”

shows up like “my school”
See any of many web resources

3

Implementing a “simple” applet
import javax.swing.JApplet; // mandatory
– Also usually Graphics and Graphics2D and others

Declare a class that extends JApplet:
public class RectangleApplet extends JApplet

Implement paint method (at least)
– Same procedures as paintComponent for components

Create an html file to load the applet in a web
browser or the appletviewer (provided with JDK)

e.g., RectangleApplet.java (see link on Slides page)

Notes on rendering text
Actually necessary to “draw” the text at a
specified location on the Graphics object
– g.drawString(aString, x, y)

– Uses current rendering context (e.g., color), and
current text attributes (e.g., font)

Font: a face name, a style, and a point size
Font f = new Font(“Serif”, Font.BOLD, 24);
g.setFont(f); // now drawString uses this font

Note: often can just use a JLabel to show in
adjacent component
– Other text display components too – even Text objects

Various applet examples
FontApplet –fonts, and text centering
TicTacToe – converting units to pixels
– Note: vertical axis increases downward – so must flip y

coordinates if drawing typical graph

ImageApplet – displaying/scaling images
EggApplet – handling mouse events
ColorSlider – slider (state-change) events

Note: all of these programs could have been applications
instead. Don’t need applets to have graphical features in
programs – just to include the programs on a web page.

5JA done! Where to go from here?

Much deeper computer science to study
– 1st take CS 10 – if you still like it, take more

Many other programming languages out there
– Beginning C is part of Engineering 3 curriculum
– C++, VisualBasic, C#, … at UC Extension, SBCC,

and tech schools like SB Business College
– But you can learn them by yourself now too!

For specifics: just get a book, and/or look for online tutorial
Lots more Java techniques to learn about
– Suggest starting with Java Tutorial – books, and

online at http://java.sun.com/docs/books/tutorial/

