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Abstract 
 

In panorama images captured by omni-directional 
cameras during video conferencing, the image sizes of 
the people around the conference table are not uniform 
due to the varying distances to the camera. Spatially-
varying-uniform (SVU) scaling functions have been 
proposed to warp a panorama image smoothly such 
that the participants have similar sizes on the image. 
To generate the SVU function, one needs to segment 
the table boundaries, which was generated manually in 
the previous work. In this paper, we propose a robust 
algorithm to automatically segment the table 
boundaries. To ensure the robustness, we apply a 
symmetry voting scheme to filter out noisy points on 
the edge map. Trigonometry and quadratic fitting 
methods are developed to fit a continuous curve to the 
remaining edge points. We report experimental results 
on both synthetic and real images. 
 
1. Introduction 
 

In the past a few years, there has been a lot of 
interest in the use of omni-directional cameras for 
video conferencing and meeting recording [1,3,4,5]. 
While a panoramic view is capable of capturing every 
participant’s face, one drawback is that the image sizes 
of the people around the meeting table are not uniform 
in size due to the varying distances to the camera. 
Figure 1 shows a 360 degree panorama image of a 
meeting room. The table size is 10x5 feet. The person 
in the middle of the image appears very small 
compared to the other two people because he is further 
away from the camera. 

    
 

                                                             
 
Fig. 1: An image captured by an omni-directional camera 

 
This has two consequences. First, it is difficult for 

the remote participants to see some faces, thus 
negatively affecting the video conferencing experience. 
Second, it is a waste of the screen space and network 
bandwidth because a lot of the pixels are used on the 
background instead of on the meeting participants. As 

image sensor technology rapidly advances, it is 
possible to design inexpensive high-resolution (more 
than 2000 horizontal pixels) omni-directional video 
cameras [1]. But due to network bandwidth and user’s 
screen space, only a smaller-sized image can be sent to 
the clients. Therefore how to effectively use the pixels 
has become a critical problem in improving the video 
conferencing experience. 

Spatially-varying-uniform (SVU) scaling functions 
have been proposed [2] to address this problem. A 
SVU scaling function warps a panorama image to 
equalize people’s head sizes without creating 
discontinuities. Fig. 2 shows the result after head-size 
equalization. 
     The generation of a SVU function, as described in 
[2], requires two curves: the bottom curve specifies the 
table boundaries, and the top curve along people’s head 
top positions. In the previous work, the two curves 
were created manually.  The problem with the manual 
segmentation is that whenever the camera is moved or 
rotated, the user has to manually mark an image, thus 
making it difficult to use. In this paper, we describe a 
technique to automatically segment the table 
boundaries and estimate the two curves. As a result, the 
SVU function can be generated automatically. 
 

 
Fig. 2: Result after head-size equalization 

 

2. Cylindrical projection of an omni-
directional camera 
 
Fig. 3 shows a mathematical model of the cylindrical 
projection. The camera is at the center of a rectangular 
table of size LW 2*2 . The projection center is ),0,0( h . 

The radius of the cylindrical film is r . The projection 
of the table edge from )0,,( LW  to )0,,( LW −  on the  

cylindrical film is  
               )/cos1( Wrhv θ−=                 ( 2-1) 

where )]/arctan(),/arctan([ WLWL−∈θ . The 

projections of the other three table edges can be 
obtained similarly. 
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Fig. 3: Cylindrical projection of the table edges 

 
    Consider a more general case where the camera may 
not be at the center of table, and the camera may be 
tilted. Let ),( lw ∆∆  denote the camera shift with respect 

to the table center. Let ),( αω  denote the camera tilt 

where ω  specifies the direction in which the camera 
tilts, and α  is the tilt angle. The projected curve of the 
table edge is  

 
αωθθ sin)cos())/(cos1( −+∆+−= rwWrhv         (2-2) 

))]/()arctan(()),/()arctan(([ wWlLwWlL ∆+∆−∆−∆−−∈θ   
),( θv  represents a point on the cylindrical film. 

Assume we cut the film at hs=θ , and flatten it. Let 
),( ϕv  represent a point on the flattened film. Then 

hs+= ϕθ . If we substitute it into equations (2-2), we 

will obtain the equations of the projected curves in the 
unfolded film coordinates.  

In general, there is a one-to-one mapping from the 
points on the cylindrical film and the points on the 
meeting table through the projection center ),0,0( h . Due 

to space constraints, we will omit the derivations and 
formula for the mapping functions. We will use 

1F  and 

2F  to denote the mapping from the table to the 

cylindrical film, and 1
1
−F and 1

2
−F  to represent the 

mapping from cylindrical film to the table. That is, 
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3. Symmetry Voting 
 

If we apply a general image segmentation algorithm 
such as EDISON [8], the result is quite noisy. Figs. 10 
and 11 show an example. We can see the edge map in 
Fig. 11 contain a lot of noises in addition to the table 
boundaries. To filter out the edge map, we observe that 
most conference tables are bilaterally symmetric. Our 
idea is to take advantage of the symmetry property to 
filter out the noise. 

 

 
Fig. 4: The top down view of the table. 

 
As shown in Fig. 4, each 3D point )0,,( yx  on the 

table boundary has three symmetric 
points: )0,,( yx− , )0,,( yx − , )0,,( yx −− . If a 2D point p  

on the edge map corresponds to the 3D point )0,,( yx , 

then the other three points (we call them p ’s 

symmetric projections) which correspond to 3D 
points )0,,( yx− , )0,,( yx − , and )0,,( yx −−  respectively, 

must be on the edge map as well.  
The symmetry voting works by enumerating all the 

possible values of αω,,,, hslw ∆∆ . For each hypothesis, it 

checks each point on the edge map to see how many of 
its symmetric projections are also on the edge map, and 
increments the accumulated weight accordingly. Finally 
the hypothesis corresponding to the largest 
accumulated weight is selected as the solution. 

To accelerate computation, we perform the 
symmetry voting method in two steps: we first vote 
for hslw ,,∆∆ , then vote for camera tilt. The following is 

the algorithm of the first step voting. 
 
Clear global h[ ][ ][ ] 
For w∆ =w_min; w∆  <= w_max; w∆ ++ 
   For l∆ =l_min; l∆ <= l_max; l∆ ++ 
      For hs=hs_min; hs <=hs_max; hs++ 
         For each edge point ),( ϕv , find ),( yx  by Eq. (2-3) 

 Update(-x,y, w∆ , l∆ ,hs);  
                Update(x,-y, w∆ , l∆ ,hs);  
                Update(-x,-y, w∆ , l∆ ,hs);  
End all 
Find the maximum of h[ ][ ][ ] and return its index as 
( w∆ , l∆ ,hs). 

 
Function  Update(x,y, w∆ , l∆ ,hs) 
          Find ),( ϕv  given (x,y) by Eq. (2-3) 

          If an edge point ),( ϕttv falls within a window of ),( ϕv          

                Then h[ w∆ ][ l∆ ][hs]+=1/distance( ),( ϕttv ),( ϕv ); 

 
  

In the second voting, we fix the hslw ,,∆∆ , and use a 

similar algorithm to vote for ),( αω  by using functions 
1

2,12,1 , −FF  . Note that we could potentially use the newly 

estimated ),( αω  and vote for c again. But we found 

that the first iteration is usually enough. 
After we obtain the optimal values for hslw ,,∆∆  and 

),( αω , we then filter out the edge map using the 

)0,,( yx

)0,,( yx−)0,,( yx −−

)0,,( yx −



symmetry properties. Given any point on the edge map 
which is the projection of )0,,( yx , we say it satisfies 

symmetry property if at least two1 of its symmetric 
projections are also on the edge map. 

 We remove all the points on the edge map which do 
not satisfy the symmetry property.  

For each point that satisfies the symmetry property, 
we add the other three projections of its symmetric 
points to the edge map. The resulting map is called 
symmetry-enhanced edge map. Fig. 12 shows the 
symmetry-enhanced edge map after applying the 
filtering operation on the edge map of Fig. 11. 

 
4. Fitting Algorithms 
 

The points on the symmetry-enhanced edge map are 
the inputs of the fitting algorithm. We have developed 
two different fitting techniques: trigonometry fitting 
and quadratic fitting. Due the page limit, we will only 
give a brief summary for each fitting method. 

The trigonometry fitting is a model-based approach. 
By assuming a rectangular table, the projected curve 
has the form of Eq. (2-2) where W, L are the unknown 
parameters that we need to estimate. Since the edge 
map is symmetry-enhanced, we only need to use the 
points on two of the four table edges. As shown in Fig. 
11, the two sections are the one between cut” and cut, 
and the one between cut and cut’ where cut, cut’, and 
cut” are all functions of W, L. 

The limitation of the trigonometry fitting is that it 
assumes a rectangular shape. For non-rectangular 
tables, the fitting is not as accurate. 

Quadratic fitting does not have such limitations. In 
quadratic fitting, we use two quadratic curves to fit the 
edge points. To regulate the fitted curve, we require 
that each of the quadratic curve has the form 

2)( cxbay −+= .  

The red curves in Figs. 13 and 14 are the results of 
the two fitting methods.  

After we obtain the table dimensions and camera 
parameters, we estimate the top curve as the following. 
We first assume an average height of a person (sitting 
at the table) above the table surface. Then we create a 
virtual table surface at this height and project its 
boundary to the cylindrical film. The details are 
omitted here. We then apply the SVU scaling function 
to equalize people’s head sizes. Fig. 15 shows the 
result based on trigonometry fitting. 

 
5. Experimental Results 
 

                                                                        
1 Requiring all the three projections on the edge map would be too 
strict due to inaccuracies of the estimated parameters and image 
noises. 

We have tested our algorithm intensively on both 
synthetic data and real data. The synthetic data are 
generated by a 3D graphics rendering program. The 
purpose of using synthetic data is to test the robustness 
of our algorithm on various conditions including 
different camera tilts, different noise levels, and 
different table shapes. 

To measure the performance when there is camera 
tilt, we set the step size of ω  to be o50 , and  α  to be 

o2.0  and generate synthetic images with different 
camera tilts. For each synthetic image, we first use 
EDISON [8] software to generate the edge map. Then 
our symmetry voting algorithm is used to estimate ω  
andα . The average error for the estimated ω  is o14.5 , 
and for α  is o0786.0 . Fig. 5 shows the error of ω  for 
different values ofα . It is interesting to note that for 
smallerα , the estimation error of ω  is larger. The 
reason is that when α is small, the direction of the tilt 
ω  becomes ambiguous. At the extreme when α =0, ω  
is arbitrary. 

 
Fig. 5: Error of ω  under different α  

 
To measure the performance under different noise 

levels, we add random black squares of size 10*10 
pixels to the synthetic images. The noise level was 
controlled by the number of the blocks N.  Fig. 6 in the 
last page is an example of the synthetic image with 100 
blocks. We use a boat-shaped (non-rectangular) table 
for this experiment. The results are in Fig. 7. The 
average error is the average distance (in pixels) 
between the fitting curve and the ground truth. We can 
see that in less noisy conditions, quadratic fitting works 
better than the trigonometric fitting. The reason is that 
the table shape is non-rectangular. When the noise 
increases, trigonometric fitting has a stronger 
regulation thus is more robust against noises. 

To measure the performance with different table 
sizes and shapes, we generate synthetic data with two 
table shapes: boat shape and rectangular shape, and 
three different aspect ratios: 1:2, 1:3, and 1:4. The 
camera tilt is set to oo 6.0,90 == αω . The noise level is 

set to N=150. Fig. 8 shows the results for boat-shaped 
tables. Fig. 9 shows the results for rectangular tables. 
We can see that in all circumstances, the maximum 
error is less than 2 pixels for both fitting methods. 



Quadratic fitting works better for boat-shaped table 
because it is able to handle arbitrary table shapes. 

 
Fig. 6: Synthetic panorama image with N=100. The yellow 

blocks simulate human heads. 

 
Fig. 7: Fitting error vs. noises on boat-shaped table 

6. Conclusion 
 

We have developed a novel technique to 
automatically detect table boundaries on o360 panorama 
images in meeting rooms. As a result, we are able to 
automatically generate SVU-scaling functions to 
equalize people’s head sizes resulting in better video 
conferencing experience. Experiments show that our 
algorithm is robust under very noisy conditions. (A 
longer version of this paper with more technical details can 
be found at http://research.microsoft.com/~zliu/TR-2005-
48.pdf) 
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Fig. 8: Fitting error vs. different table sizes for the boat shaped 
table. 

 
Fig. 9: Fitting error vs. different table sizes for the rectangular 
table.

 
Fig. 10: A real image with clutter background. 

 

 
Fig. 11: Edge map extracted from original image. 
 

 
Fig. 12: Symmetry-enhanced edge map. 

 
Fig. 13. Result of trigonometry fitting. 

 

 
Fig. 14. Result of quadratic fitting 

 

 
 

Fig.15.  Head-size equalization based on the curve from 
trigonometry fitting. 


