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ABSTRACT

This paper aims to empirically investigate the extent of difficulty in implementing 
Borda outcomes  when  n voters  report  only the  first  r ranks  of  their  linear  preference 
rankings over m alternatives. The information contained in the first  r ranks is aggregated 
through a Bordalike method, namely the r-Borda rule. Monte-Carlo experiments are run to 
detect changes in the likelihood of the r-Borda winner to coincide with the original Borda 
winner as a function of m, n and r. The voters' preferences are generated through Impartial 
Anonymous  and Neutral  Culture  model  where  both  the  names  of  the  alternatives  and 
voters are immaterial. For a given r, the likelihood of choosing the Borda winner decreases 
towards zero independently of  n as  m increases within the computed range of parameter 
values, 1 ≤m,n ≤30. We show empirically that this probability is inversely proportional to 
m, and determine the constant of proportionality for two different types of likelihood that 
we consider.

1. INTRODUCTION

A voting rule solves the collective decision problem, where the voters must jointly 
choose one among the possible outcomes (alternatives), on the basis of the reported ordinal 
preferences. The choice of a voting rule has been a major ethical question ever since the 
political  philosophy of the Enlightenment.  When only two alternatives are at stake, the 
ordinary  majority  voting,  whose  axiomatic  formulation  is  due  to  May(1952)  is 
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unambiguously regarded as the 'fairest' method. For three and more alternatives, plurality 
voting, where each voter reports the name of (exactly) one alternative on his ballot and the 
alternative receiving the most votes wins, has been historically the most popular voting 
rule. The two celebrated critiques of plurality voting, Borda(1781) and Condorcet(1785) 
noted that plurality voting may elect a poor candidate, namely, one that would lose in a 
simple  pair-wise  majority  comparison  to  every  other  candidate.  Borda  and  Condorcet 
individually  devised  different  rules  to  replace  plurality  voting  as  attempts  to  extend 
majority voting among pairs. Borda introduced the Borda Rule, which assigns points to 
each candidate, linearly increasing with the candidate's ranking in a voter's opinion, and 
elects the alternative with the highest total score over all alternatives. On the other hand, 
Condorcet,  a strong critic  of Borda Rule,  provided the most  analyzed  non-positionalist 
voting principle, the principle that, if a candidate defeats every other candidate on the basis 
of the simple majority rule, then that candidate should be the winner in the election. These 
two approaches have generated most of the modern scholarly research which focus on the 
ways of aggregating individual preferences into social decisions in a manner compatible 
with the fulfillment of a variety of positive and normative criteria. 

As shown by Niemi and Riker(1976),  Fishburn(1984),  Nurmi(1987),  Amy(2000), 
there  is  no perfect  voting procedure,  however  some procedures  are  clearly  superior  to 
others in satisfying certain criteria. Borda rule certainly occupies a special place among all 
voting rules due to its important superiorities. Unlike the great majority of the voting rules 
in the literature, Borda Rule has theoretical characterizations. Among those, Young(1974), 
Hansson and Sahlquist(1976), Nitzan and Rubinstein(1981) and Debord(1992) are the best 
known  ones.  It  is  shown  by  Saari(1987,  1989,  1990,  2001)  that  Borda  rule  is  less 
susceptible  than  all  other  positional  scoring  rules  to  some  unsettling  possibilities  and 
paradoxes.  Some of  the  theoretical  and  probabilistic  results  concerning  Borda  rule  are 
summarized  in  Brams  and  Fishburn(2002)  and  Pattanaik(2002).  However,  among  its 
shortcomings,  its  vulnerability  to  strategic  manipulations  and  the  difficulty  of 
implementing it in real life remain its most criticized properties.  There are many studies 
which theoretically and/or probabilistically consider the former issue.  In this paper, we 
focus on the latter which, to our knowledge, has not been studied in detail.

The implementation criterion is concerned with the complexity of the information 
that  a  voting  procedure  requires  from  voters  concerning  their  preference  over  the 
alternatives. Unlike non-ranked single-stage voting procedures (such as plurality voting, 
negative  plurality  voting,  and  approval  voting)  and  non-ranked  multistage  voting 
procedures (such as plurality with a  run-off  and plurality with successive elimination), 
Borda rule is a ranked procedure as Condorcet-consistent voting rules since it requires the 
complete preference rankings of the electorate over the set of available alternatives. This 
requirement is quite difficult to fulfill due to the associated complications both on the side 
of the voters and the administrators who are to collect this information. 

In this paper, we aim to investigate the extent of difficulty in implementing Borda 
outcomes  when voters  are  asked to  rank only  a  specified  number  of  alternatives.  We 
consider the situations where  n voters are required to report only the first  r (1 ≤ r < m) 
ranks of their linear (i.e. full or total) preferences over m alternatives. We assume that the 
truncated individual preferences are aggregated through a method a lá Borda, namely  r-
Borda  rule. The  r-Borda  rule assigns  strictly  positive  points  to  each  alternative  that 
appears in the first r-ranks of a voter's actual preference, linearly increasing with its rank, 
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and gives zero points to the ones that are not among the top r-ranks in the voter's decision. 
Then, the alternative(s) that receive(s) the highest score over the entire electorate is elected 
as the r-Borda winner(s).

 We run Monte-Carlo experiments to ascertain the information content of the first r 
ranks of the electorate's preferences from the perspective of implementing the (original) 
Borda outcome, i.e. the likelihood of r-Borda winner to coincide with the Borda outcome 
that would emerge if the full preferences could be considered, namely the m-Borda winner. 
It  should  be  noted  that,  the  way that r-Borda  rule  aggregates  the  voter  preferences  is 
different than the aggregations implemented by well-known single- and multi-stage non-
ranked procedures which permit truncated ballots. In other words, the present study is not 
aiming to detect the likelihood of any of these rules to choose the Borda winner(s). 

The à la Borda aggregation of truncated individual preferences is a popular method 
for  sports  and  contests  in  real  life.  The  “Most  Valuable  Player”  contest  run  by  the 
Associated Press and United Press International in NCAA (National Collegiate Athletic 
Association) sports,  as  well  as  the  “Most  Valuable  Player”  contest  for  the  National 
Basketball Association in the United States, the Eurovision Song Contest and the Formula 
1 Car Race are best known examples which adopt Borda-like aggregation methods for the 
truncated  ballots.  These  contests  require  the  voters  to  rank  a  specified  number  of 
candidates. Each stated candidate is given a score depending on its rank in the preference 
ordering of a voter, and the candidate that receives the maximum score gets elected as the 
winner. The number of candidates to be ranked and the scores to be assigned to the ranks 
change from one contest to another. The People’s Remix Music Competition requires the 
voters to rank their top three candidates and gives three, two and one points to the first-, 
second- and third-ranks relatively. This is equal to our rank scoring for r=3.

 
Like  many  other  voting  procedures,  the  Borda  rule  can  choose  more  than  one 

alternative as the winner. Instead of randomly breaking the ties, we adopt two types of 
probabilities computed for triples of  m,  n and  r  as the likelihood of choosing the Borda 
winner  with  partially  reported  linear  preference  rankings.  The  first  type  refers  to  the 
likelihood of choosing  exactly the same set of Borda winners of the original profile by 
considering only the reported partial  profile,  i.e.  the probability  of  the set  of  m-Borda 
winners and r-Borda winners to be identical. The second type of probability considers the 
likelihood of r-Borda winners to be included in the set of m-Borda winners. We investigate 
the changes in these values as a function of m, n and r by considering all possible values of 
these parameters in an appropriate range. 

The  voters’  preferences  are  generated  through Impartial  Anonymous  and Neutral 
Culture (IANC) model.  As introduced by Eğecioğlu and Giritligil  (2005), IANC model 
treats the voters' preferences through a class of preference profiles, namely  root profiles, 
where the names of both voters and alternatives are immaterial. 

2. CONTRIBUTION AND RELATION TO LITERATURE

To our knowledge, this study is the first attempt in the literature to analyze the extent 
of  difficulty  in  implementing  Borda  outcomes  when  voters  are  asked  to  rank  only  a 
specified number of alternatives, and where the underlying model is as structurally general 
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as is possible. The contribution of the paper and its relation to literature can be discussed 
based on two main issues: aggregation of truncated preferences and generation of voters’ 
preferences.

Aggregation of truncated preferences

A positional scoring vector for the (finite) alternative set A of  m elements is a real 
vector s = (s1,s2,..,sm) for which s1≥s2≥…..≥sm and s1>sm. As the most well-known positional 
scoring procedure, Borda rule is defined by the scoring vector s(Bm) = (m-1,    m-2,…,0). 
That is, si = m-i for all i, and the difference in scores si-sj is proportional to j-i for all i and j. 
In this paper, we consider the situation where the voters are asked to state only the first r 
ranks of their linear preferences over the m alternatives and investigate the importance of 
the  information  revealed  in  the  first  r ranks  of  the  electorate's  preferences  from  the 
perspective of implementing the Borda outcome. Here, the way that this partial information 
is aggregated plays the key role. We aggregate this information in a Borda fashion. That is, 
an alternative in rank i is assigned the score si(Br) =r+1-i if i≤r, and   si(Br) = 0 otherwise. 

Nurmi(1987)  considers  the  situations  where  a  proposal  of  a  lower  level  body 
concerning the order of priority among the candidates to an office is to be submitted to the 
nominating  authority.  He stresses  the importance  of  determining  non-arbitrary ways  of 
coming up with a collective preference order on a subset of candidates whose cardinality is 
fixed by the information asked of the voter, and proposes a method which guarantees some 
degree of “proportionality”. Although this method is not exactly equal to the r-Borda rule 
we adopt here, it has similar peculiarities to it. 

It  should  be  noted  that  r-Borda  rule  aggregates  the  truncated  preferences  unlike 
constant scoring rules. A constant scoring rule asks each voter to indicate a given (and 
constant)  number  of  alternatives.  Each  of  the  indicated  alternatives  receives  one  point 
whereas  the all  the others get zero,  and the alternative  with the most  votes is  elected. 
Hence, for  m≥3, the scoring vector imposed by  r-Borda rule is not the same as the one 
assigned by a constant scoring procedure unless  r=1, i.e. (1,0…,0), which is the vector 
identifying of the most popular constant scoring rule, namely plurality rule. That is, the 
outcomes of the plurality rule and 1-Borda procedure coincide for m≥3. The probability of 
constant  scoring  voting  rules  to  choose  the  Borda  outcome  has  been  studied  by 
Gehrlein(1981),  Gehrlein  and  Lepelley(2000)  and  Vandercruyssen(1999).  Gehrlein  and 
Fishburn(1980) and Gehrlein etal.(1982), on the other hand, provide the propensity of pairs 
of score vectors for a set A of alternatives and a nonempty proper subset of A to yield the 
same ranking over the subset for an arbitrary profile of linear orders on A.  

The method we adopt to aggregate truncated preferences is also different than some 
other procedures that  permit  truncated ballots.  Among these,  approval  voting has been 
considered the most in both theoretical and practical grounds. Under approval voting, each 
voter indicates those alternatives that s/he approves of. Each approved alternative receives 
a point,  and the winner is the alternative with the highest point total,  summed over all 
voters. Axiomatized by Fishburn (1978) and Sertel(1978), approval voting is extensively 
analyzed  with comparisons  to  Borda  rule,  as  well  as  other  rules.  Brams and Fishburn 
(2002) provide a summary of the theoretical debate between approval voting and the Borda 
rule. 
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Recently, a version of approval voting, fallback voting, was proposed by Brams and 
Sanver(2005) which is the application of fallback bargaining of Brams and Kilgour(2001) 
to  voting.  Fallback  voting  requires  the  voters  to  rank  their  approved  alternatives  and 
successively  falls  back  on  lower-ranked  approved  alternatives  if  no  higher-ranked 
approved alternatives  receive  majority  approval.  For both approval  voting and fallback 
voting, the number of alternatives to be indicated or ranked by the electorate is not given or 
homogeneous across the voters. Majoritarian compromise, on the other hand, requires the 
ranking  of  card(A)/2 alternatives,  where  . is  the  ceiling  function).  Introduced  by 
Sertel(1987),  majoritarian compromise selects  the candidate  that  has the support  of the 
majority  in  the  best  degree  possible.  Clearly,  these  rules  aggregate  the  truncated 
preferences in a quite different fashion than the way we consider in this paper. Therefore, 
the likelihood of the coincidence of the outcomes of these rules and of the Borda rule is a 
different question than what we ask here. 

Let us consider a social planner who believes that Borda Rule is the “fairest” voting 
rule  to  be adopted  for  an  election,  but  is  unable  to  ask the  voters  to  report  their  full 
preference rankings over  m alternatives because of the practical complications alluded to 
above. As it is generally practiced, he can ask the electorate to report only their first-best 
alternatives. Or, he can require the voters to state the first r (1 ≤ r < m) ranks of their linear 
preference rankings in the hope of increasing the probability of choosing the Borda winner 
that would be elected if the full linear preference rankings could be collected. Especially in 
such a case like this, it seems natural to aggregate the reported partial rankings via the 
original Borda fashion for the sake of preserving some “consistency” in the aggregation 
method used for declared preferences. 

Generation of voters’ preferences

An immense literature has been devoted to analyze the “behaviors” of various social 
choice rules through the use of computer simulations and of probability models designed to 
generate  voters'  preferences.  There are two basic and most  commonly used probability 
models in this literature, namely, Impartial Culture (IC) and Impartial Anonymous (IAC) 
conditions. IC condition has been introduced in social choice literature by Guilbaud(1952). 
It is the multinomial equiprobable preference profiles model that assumes that each voter 
selects her preference according to a uniform probability distribution. On the other hand, 
IAC, which has first been introduced by Fishburn and Gehrlein(1978), relies also on an 
equiprobability assumption, but without taking the identity of the voters into account. The 
details about these assumptions and their extensive use in the literature are presented in 
Berg and Lepelly (1994) and Gehrlein(1997). 

In this  paper,  we generate  the voters’  preferences through IANC model  which is 
introduced by Eğecioğlu and Giritligil(2005). IANC is also an equiprobability assumption, 
however, unlike IC and IAC, it is able to neglect the names of both alternatives and voters. 
IANC regards each root profile from which all the preference profiles can be generated 
through renaming the alternatives and voters, equally probable. Since the number of root 
profiles is small relative to the number of profiles that can be generated for m alternatives 
and n voters, IANC enables the researcher to obtain quite accurate probabilities even for 
large parameter values. As it is noted in Section 3.2, the probabilities computed through 
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IAC and IANC models coincide only in the vanishingly small likelihood of m! and n being 
relatively prime. 

We would like to remark that when a voting rule is invariant under a large group of 
symmetries  of  the  underlying  set  of  preference  profiles,  structurally  the  most  accurate 
theory is the one which takes all of the symmetries that leave the outcome invariant into 
account. Regarding no set of symmetries gives the simplest model IC; taking into account 
only the symmetry of the voters gives the commonly used model  IAC; and taking the 
symmetries of both the voters and the alternatives into account gives the strongest model 
IANC. Taking more symmetries into account makes it possible to  characterize structural 
properties of the voting rules more accurately,  however the mathematics becomes more 
complicated with each step, with resulting algorithmic difficulties in generating preference 
profiles  “fairly” (i.e.  requiring that  each distinct  profile  should be equally  likely to  be 
selected) from the equivalence classes under the group of symmetries assumed. This paper 
is  the  first  study in  the  literature  which  generates  the  electorate’s  preferences  through 
IANC model.

Public Choice Society adopted approval voting in its presidential election of 2006. 
The voters were permitted to vote for as many candidates  as they liked.  Based on the 
method of  generalized  spectral  analysis  introduced by Lawson etal.(2006),  Brams etal.
(2006) compare the results of the election with the possible outcomes that would have been 
obtained  if  plurality,  Condorcet,  Borda  or  single  transferable  vote  has  been  adopted. 
Through a different method developed by Falmagne and Regenwetter(1996), Regenwetter 
and Grofman(1998) analyze ten three-candidate elections conducted under approval voting 
and construct a distribution of rank orders from subset choice data. It should be noted that 
both Brams etal.(2006) and Regenwetter and Grofman(1998) start with partial information 
on  the  voter  preferences  and  adopt  different  methods  in  order  to  obtain  complete 
preference rankings based on this information. However, in the present study, we take the 
full orderings over the set of alternatives as given and then consider the first  r-ranks of 
these orderings. It should be noted that given  r-ranks of preference orderings, assigning 
probabilities to each alternative to be the Borda winner, and based on these probabilities, 
checking whether the “possible” Borda winner(s) coincide(s) with the r-Borda winner is a 
different approach for detecting probabilities, clearly leading to different results.

3. PRELIMINARIES

3. 1. Preference Profiles and the Borda Rule

         By a preference on a set A we mean any function p: A→ 2A which assigns to every 
a∈ A a subset (“lower contour set”) p(A) ⊂ A such that, at all a, b ∈ A we have

    (1)  b ∈ p(a)  or  a ∈ p(b)     [completeness]

    (2)  p(b) ⊂ p(a) whenever b ∈ p(a)   [transitivity]

    (3)  b ∈ p(a)  and  a ∈ p(b)   only if    a = b    [antisymmetry]
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Such a preference clearly corresponds to a linear (or total) order on A.    
 
We denote by p(A) the set of all preferences on a set A. For any positive integer n we 

write [n] = {1,2,..,n}, and by a preference profile for a society of n voters on a set A we 
mean any family Pm,n = (pi)i∈[n] ∈ p(A)[n] of preferences pi on A indexed by  voters  i ∈ [n]. 

Let  card(pi(a)) be the cardinality of the lower counter set of a ∈ A for i∈[n]. Note 
that the cardinalities of the top- and bottom- ranked alternatives are m and 1, respectively.
 
          The Borda score of a ∈ A for i∈[n] is defined as, 

                   a
iB = card(pi(a)),

and the set of m-Borda winners at each Pm,n ∈ p(A)[n] is determined by setting

 B(Pm,n) = 
Aa∈

maxarg

[ ]
Σ
∈ni

a
iB .

 Thus, the Borda Rule chooses the candidates who maximize the total Borda score 
aggregated over the set of all n voters. 

          Let r
nmP ,  denote the portion of a preference profile Pm,n where only the first r ranks 

of the voters'  preferences can be observed. When we view the profile  Pm,n as an  m× n 
matrix with m rows and n columns, then r

nmP ,  corresponds to the r× n submatrix of Pm,n 

consisting of the first r rows. Note that, when r = m or r = m-1, the Borda outcome of the 
entire preference profile is detectable. However when r < m-1, the observable preference 

r
ip of  voter  i corresponds  to  a  partial  strict  ordering  on  A  which  is  transitive  and 

antisymmetric, however incomplete. Let  r
iA ⊆ A be the set of alternatives that appear at 

r
ip . 

Let  card( r
ip (a)) be the cardinality of the observable lower counter set of a ∈ r

iA  

for i∈[n]. Note that 1 ≤ card( r
ip (a)) ≤ r.  We now re-define the Borda score of a ∈ A 

for i∈[n] as, 

                   a
iB  =   card( r

ip (a)), if a ∈ r
iA

                               0, otherwise,

and the set of r-Borda winners at any r
nmP , is given by

             

 B( r
nmP , ) = 

Aa∈
maxarg

[ ]
Σ
∈ni

a
iB . 

In other words, if an alternative is among the first r-ranks of a voter's original preference 
ranking, then its Borda score is equal to the number of the alternatives it beats at the first r-
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ranks of this preference. If it is not one of the top r-ranked alternatives, it receives a Borda 
score of zero. Then, the “modified” Borda rule chooses the alternatives with the highest 
Borda scores aggregated over all voters as the set of r-Borda winners. 

When  the  preference  profile  and  the  dependence  on  m and  n is  clear  from the 
context, we denote B( r

nmP , ) simply by Br, for 1 ≤r ≤m. Note that Bm   (and also Bm-1  = 
Bm) is the set of Borda winners of the full profile, and B1 is the set of plurality winners.

3.2 Root Profiles and IANC

Let  Ω(m,n) denote the set of all preference profiles that can be generated for  m 
alternatives  and  n voters.  As  shown  in  Eğecioğlu  and  Giritligil  (2005),  a  product 
permutation group on the names of alternatives and of voters acts on Ω(m,n), and splits it 
up into a disjoint union of subsets called orbits, i.e.

 
Ω(m,n) = 1θ + 2θ + … + ωθ ,

where each iθ  is an anonymous and neutral equivalence class (ANEC). All the preference 
profiles within an anonymous and neutral equivalence class can be generated from each 
other through re-labeling the alternatives and/or the voters. The preference profiles of any 
such class are equal in the sense that any anonymous and neutral social choice rule, such as 
Borda Rule, yields the same alternative as the winner (however, under different names) for 
all of them. 

A  root profile  is any preference profile that represents an anonymous and neutral 
equivalence class. That is, all the other preference profiles within the same equivalence 
class (orbit)  can be generated from this root profile via permuting the names of the  m 
alternatives  and  simultaneously  those  of  the  n voters.  We denote  by R = R(m,n) the 
collection  of  root  profiles  for  m alternatives  and  n voters.  Each  element  of  this  set 
represents an equivalence class of preference profiles from Ω(m,n).

       We define a preference profile as a matrix of size m× n which shows how each of the 
n voters  linearly  orders  m alternatives.  We  assume  that  the  voters  correspond  to  the 
columns and the alternatives correspond to the rows of the matrix. 

         As an example, let us consider a case with two alternatives, a and b, and three voters 
labeled v1, v2 and v3. There are two possible linear preference rankings for two alternatives: 
a is strictly preferred to  b, or b is strictly preferred to  a. The total number of preference 
profiles that can be generated is 3!2  = 8. 

P1:

v
1

v
2

v
3

a a a
b b b

P2:

v
1

v
2

v
3

a a b
b b a

P3:

v
1

v
2

v
3

a b a
b a b

P4:

v
1

v
2

v
3

b a a
a b b

P5: P6: P7: P8:
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v
1

v
2

v
3

b b a
a a b

v
1

v
2

v
3

b a b
a b a

v
1

v
2

v
3

a b b
b a a

v
1

v
2

v
3

b b b
a a a

Note that there are four AECs for this example: 1AEC ={ 1P } , 2AEC ={ 2P , 3P , 4P

}, 3AEC ={ 5P , 6P , 7P } and 4AEC ={ 8P }. There are two possible permutations for 
the names of the alternatives: one is the identity permutation which leaves the names of the 
alternatives intact, and the other is the permutation which relabels a  as b and b as a. If we 
apply these permutations to the AECs above, we obtain a further partition of the set {

1AEC , 2AEC , 3AEC , 4AEC }  of anonymous  equivalence classes.  Note that  this  new 
partition gives us only two ANECs: 1ANEC ={ 1AEC , 4AEC }, and 2ANEC ={ 2AEC , 

3AEC }. The root representing 1ANEC shows a preference structure at which all voters 
have the same preference ranking, and the root representing 2ANEC  exhibits a structure 
where one of the preference rankings is adopted by two voters and the other is adopted by 
one voter. 

IANC uses root profiles to represent voters' preferences through an application of the 
Dixon  Wilf  algorithm  which  enables  the  roots  to  be  generated  from  the  uniform 
distribution  for  m alternatives  and  n voters.  That  is,  each  root  profile  is  generated 
uniformly with probability 1/card(R(m,n)). This allows for Monte-Carlo algorithms for the 
empirical  analysis  of  the  behaviors  and  applications  of  anonymous  and  neutral  social 
choice rules even for large electorate size and high number of alternatives as we describe 
below in the analysis of selecting the Borda winner, when only partial preference rankings 
of the voters are available. 

Although an immediate way to compute the number of roots (ANECs) for a given m 
and n seems to be dividing the number of AECs by m!, there are cases for which this does 
not work. Let us demonstrate the problem via the following example: For m=2 and n=2, 
there are four preference profiles:

P1:

v
1

v
2

a a
b b

P2:

v
1

v
2

a b
b a

P3:

v
1

v
2

b a
a b

P4:

v
1

v
2

b b
a a

There are three AECs for this case: 1AEC ={ 1P } , 2AEC ={ 2P , 3P } , 3AEC = { 4P

}. Here 3/2! is not an integer and there are two ANECs: 1ANEC ={ 1AEC , 3AEC }, and 

2ANEC = { 2AEC }.

  For 2ANEC ,  no permutations of alternatives lead to anything other than 2ANEC  
itself,  so it has only one AEC. Hence, an ANEC might contain less than  m! AECs. A 
special case of a formula for the calculation of the number of ANECs in Eğecioğlu(2005) 
generalizing  a  result  of   Giritligil  and  Doğan(2004),  as  well  as  results  presented  in 
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Eğecioğlu and Giritligil (2005)  explain the effect of the numerical properties of n and m in 
determining the number of roots. In particular,  given a pair  of integers  m and  n,  each 
ANEC root represents m! AECs if and only if m!  and n are relatively prime. However, the 
probability of m! and n to be relatively prime is vanishingly small, a proof of this fact can 
be found in the Appendix.
4. LIKELIHOOD MEASURES

4.1 Types of Likelihood:
 

Two  types  of  probabilities  are  considered  for  measure  of  the  likelihood  of 
implementing the Borda outcome with partially observed linear preference rankings of the 
voters.

• Pr1  =  Pr1(m,n,r) refers to the likelihood of choosing exactly  the set of Borda 
winners themselves by considering only the first  r rows of a preference profile, 

r
nmP , . In other words Pr1 is the probability that Br = Bm. For a given preference 

profile Pm,n we consider the random variable

         f1( r
nmP , ) =   1, if  B( r

nmP , ) = B(Pm,n) 
                   0, otherwise.

Then, 

Pr1 = 
)),((

1

nmRcard
∑
∈ ),(

,1

,

)(
nmRP

r
nm

nm

Pf
 

• Pr2 = Pr2(m,n,r) is the likelihood that an r-Borda winner (chosen at random from 
among all r-Borda winners) is one of the Borda winners of the full profile. Thus 
it is the likelihood that an element of Br is actually an element of Bm.  For a given 
Pm,n , consider the random variable

 f2( r
nmP , )    =  

))((

))()((

,

,,
r

nm

r
nmnm

PBcard

PBPBcard ∩
 

(1)

Then,

Pr2 = 
)),((

1

nmRcard
∑
∈ ),(

,2

,

)(
nmRP

r
nm

nm

Pf
 

Note that the above definition of f2( r
nmP , ) is intuitive: If B( r

nmP , ) ⊆ B(Pm,n), then     f2(
r

nmP , )  =  1,  since  any  r-Borda  winner  selected  on  the  basis  of  the  first  r  ranks  is 

automatically a Borda winner; if B( r
nmP , ) and B(Pm,n) are disjoint, then f2( r

nmP , ) = 0, as 
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in this case no r-Borda winner can possibly be a Borda winner; and if B( r
nmP , ) contains, 

say, two elements of B(Pm,n), then  f2( r
nmP , ) = ))((

2

,
r

nmPBcard , i.e. only two elements 

out of a total of B( r
nmP , ) would be Borda winners for the complete profile.

Given the distribution of profiles to be generated for a given m and n, and a given r, 
the approximate probability (of both types) is computed through Monte-Carlo integration 
by making use of the law of large numbers. The law of large numbers implies that the 
average of a random sample from a large population is likely to be close to the mean of the 
whole  population.  We apply  this  to  the  averages  that  define  Pr1 and  Pr2 through  the 
random variables f1 and f2.

The tools provided by Eğecioğlu and Giritligil (2005) allow for the generation of 
roots profiles from R(m,n) with probability 1/card(R(m,n)). Then we can approximate the 
actual probability as follows: we generate a large number of root profiles from R(m,n) with 
uniform probability  1/card(R(m,n)),  where each  selection  is  done independently  of  the 
others. Let S(m,n) denote the set of these generated profiles. Then the law of large numbers 
implies that 

      Pr1   =  
)),((

1

nmRcard
∑
∈ ),(

,1

,

)(
nmRP

r
nm

nm

Pf
 ≈   

)),((

1

nmScard

∑
∈ ),(

,1

,

)(
nmSP

r
nm

nm

Pf
                (2)

Hence, when only the first r-ranks of the n voters' preferences over m available alternatives 
are  reported,  the  probability  of  implementing  the  Borda  outcome  by using  only  these 
partial  preferences  equals  to  the  computed  probabilities  aggregated  over  all  generated 
profiles in S(m,n), divided by the total number generated. Note that for the formulation (2) 
to result in a valid Monte-Carlo algorithm for the computation of Pr1,  it is essential that 
each Pm,n  in S(m,n) be drawn from the uniform probability on R(m,n). 

The  computation  of  Pr2  by a  Monte-Carlo  method  is  similar.  We generate  a  set 
S(m,n) of  root  profiles  of  m alternatives  and  n voters,  where each profile  in  S(m,n) is 
generated uniformly and independently. Then

        Pr2   ≈   )),((

1

nmScard
∑
∈ ),(

,2

,

)(
nmSP

r
nm

nm

Pf
 

(3)

Again,  for  the  formulation  (3)  to  result  in  a  valid  Monte-Carlo  algorithm  for  the 
computation of Pr2,  each  Pm,n  in  S(m,n) must be drawn from the uniform probability on 
R(m,n). 

4.2. Examples:
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Below we present a preference profile as a matrix of size  m×n where the voters 
correspond to the columns and the alternatives correspond to the rows. 

Example 1: Let us consider the following profile: 
                                           

a a b c d
b b d d a
c c c b b
d d a a c

 
The original Borda winner for the above profile is 'b', i.e. B( 5,4P ) = {b}. If only the first 
ranked alternatives are reported, then 'a' is chosen as the 1-Borda (or Plurality) winner, i.e. 
B( 1

5,4P ) = {a}. Since {a} ≠ {b}, f1( 1
5,4P ) = 0. On the other hand,  f2( 1

5,4P ) = 0 because 
{a} ∩ {b}= ∅. If the first two ranks of the voters' preferences are reported, i.e. if we pick 
r = 2, then B( 2

5,4P ) = {a}.1 Since B( 5,4P ) = {b}, we again have f1( 2
5,4P ) = 0 and       f2(

2
5,4P ) = 0.

Example 2: Now let us consider the profile below:

a a d d b
b d c c c
c c b a a
d b a b d

 
The set of Borda winners is B( 5,4P ) ={a,c,d}and the set of 1-Borda winners is         B(

1
5,4P ) = {a,d}. Then, for this profile f1( 1

5,4P ) = 0 and f2( 1
5,4P ) = 1. For r=2, we find that 

B( 2
,nmP ) = {d}, and therefore the profile yields f1( 2

5,4P ) = 0 and f2( 2
5,4P ) = 1.

Example 3: 
a a b b c
b c c c a
c b a d b
d d d a d

 
For the above profile, the set of Borda winners is B( 5,4P ) = {b,c}, and the set of 1-Borda 

(Plurality) winners is B( 1
5,4P ) = {a,b}. Then, for this profile f1( 1

5,4P ) = 0 and f2( 1
5,4P ) = 

1/2.  We find  that  B( 2
,nmP )  =  {a,b,c},  and  hence  the  profile  yields  f1( 2

5,4P )  =  0  and 

f2( 2
5,4P ) = 2/3.

We observe that when f1( r
nmP , ) = 1, then  B( r

nmP , ) = B(Pm,n), and consequently 

1 The set of (m-1)-Borda winners is necessarily equal to the set of original Borda winners (i.e. the set 
of m-Borda winners).
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f2( r
nmP , ) = 

))((

))()((

,

,,
r

nm

r
nmnm

PBcard

PBPBcard ∩
 = 

))((

))((

,

,

r
nm

r
nm

PBcard

PBcard
= 1. 

On the other hand when f1( r
nmP , ) = 0, then  B( r

nmP , ) ≠  B(Pm,n), but it is still possible that 

these two sets are not disjoint. In other words, when f1( r
nmP , ) = 0, it may happen that  f2(

r
nmP , ) ≥ 0. It follows that f1( r

nmP , ) ≤  f2( r
nmP , ). As it follows from the definition of 

Pr1 and Pr2, for any selection of m, n, r, we always have Pr1  ≤ Pr2 .

5. MONTE-CARLO EXPERIMENTS

At the heart of the Monte-Carlo experiments given here is the Mathematica program 
GenerateRoot[m,n] (the  Mathematica  notebook  containing  this  function  can  be 
accessed  online  for  experimentation:  see  Eğecioğlu  (2004)).  The  program 
GenerateRoot[m,n] takes two integers  m and n as input parameters and generates an 
IANC preference profile as an m×n matrix as its output. The preference profile returned 
each time by GenerateRoot[m,n] is guaranteed to be distributed over the R(m,n)  roots 
uniformly.  As we remarked before, to be able to estimate the probabilities  Pr1  and Pr2  

through the  formulations  (2)  and (3)  by using the  law of  large  numbers,  we need the 
preference  profiles  generated  be  uniform  over  the  set  of  roots  R(m,n). 
GenerateRoot[m,n]does exactly that. 

The design of the Monte-Carlo experiments was as follows. We have generated 1000 
root profiles for each value of the parameters  m, n under consideration.  Thus we took 
card(S(m,n)) = 1000. Taking larger sample sizes is a matter of computational resources 
available, as this particular algorithm is of the type referred to as “embarrassingly parallel”. 
The  ranges  of  the  parameters  were  taken  to  be  1 ≤m,  n ≤30  for  most  Monte-Carlo 
experiments carried out. Below are the basic steps followed for the computation of both 
Pr1  and  Pr2  type probabilities in the symbolic algebra package Mathematica:

Step 1: We have generated the values of m and n themselves, 1 ≤ m, n ≤30  iteratively by 
means of two nested loops.

Step  2:  For  the  given  values  of  m and  n, we  have  invoked  the  function 
GenerateRoot[m,n], which returned a preference profile Pm,n  from the uniform 
distribution on the set of root profiles R(m,n).

Step 3: We have computed the set of Borda winners B(Pm,n) for the complete profile  Pm,n 

returned.

Step 4: In addition, for every value of  r in the range 1 ≤ r  <  m, at this point we also 
computed the set of Borda winners B( r

nmP , ) by considering only the first r rows of 
the profile Pm,n.

Step 5: Using the sets B(Pm,n) and  B( r
nmP , ) available, we evaluated the random variables 

f1 and  f2 corresponding to the triple m, n,  r.
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Step 2 through Step 5 were executed card(S(m,n)) times. The approximations to Pr1 and 
Pr2  for given m, n and r were calculated afterwards by dividing the sum of the computed 
values of  f1 and  f2   in Step 5 by card(S(m,n)). 

5.1 Experimental results on Pr1 type probabilities 
We present the computed  Pr1 type probabilities of the set of  r-Borda winners to be 

exactly equal to the set of m-Borda winners in Table 1. To be able to present these results in 
a comprehensible fashion, we have used a fixed value n = 30 for the tabulation given. The 
range of m is 1 ≤m ≤30. For m alternatives, the value of r changes in the range 1 ≤r≤m. 
The  rows  of  Table  1  are  indexed  by  m,  and  the  columns  are  indexed  by  r.  For  the 
description of the values  in this  table,  we consider a special  case:  suppose  m = 5.  We 
generated 1000 IANC profiles from the uniform distribution, and computed the fraction of 
the cases for which Br and B were identical, where Br is the set of Borda winners obtained 
by scoring the first  r rows of the profile, and B = Bm is the set of Borda winners for the 
profile. These are the computed probabilities listed in the table. Let B1, B2, B3, B4, B5 denote 
the  r-Borda winners obtained by considering the first 1, 2, 3, 4, and 5 rows respectively. 
Thus B1 is the set of plurality winners, B = B5 the set of Borda winners. Then we can read 
from the fifth row of Table 1 that 

Pr[B1=B] = 0.51, 

Pr[B2=B] = 0.671, 

Pr[B3=B] = 0.818, 

Pr[B4=B] = Pr[B5=B] = 1.

Figure  1 is  a  three-dimensional  plot  of  the  computed  Pr1 type  probabilities.  It  is 
interesting that for the values of the parameters shown, Pr1 appears to be independent of n 
especially as the value of n increases. A close observation shows that for n fixed at 30, Pr1

→ 0 as m gets large for fixed r, and the behavior is roughly as (1+r)/m. We have made a 
least squares fit of the sections of this surface at the values of m, 1 ≤m≤30, by considering 
the family of functions of the form f(m,r) = c(1+r)/m (c  constant). The best approximating 
function in the least-squares sense was found to be 

                  Pr1  ~   f(m,r) =   r/m + 1.4/m                                                                 (4)

Figure  2 is  a  three-dimensional  plot  of  the  values  of  this  approximating  function 
f(m,r) = r/m + 1.4/m. Comparing with the plot of the actual probabilities given in Figure 1, 
we see that the probability that the set of r-Borda winners to be exactly equal to the set of 
Borda winners very well approximated by the expression for Pr1 in (4).

To summarize,  for large values of  n,  the likelihood of choosing exactly the set of 
Borda winners themselves by considering only the first r (1<r<m-1) rows of a preference 
profile  is  independent  of  n,  and  increases  as  the  ratio  r/m increases.  However,  it  is 
impossible to guarantee the exact Borda outcome unless r is set to be equal to m-1 or m.   

14



5.2 Experimental results on Pr2 type probabilities 
In  Table 2,  we present  the computed  Pr2 type  probabilities  of  the set  of  r-Borda 

winners to contain an element which is also an m-Borda winner. We present these results 
for the fixed value n = 30. The range of m is 1 ≤m ≤30. For m alternatives, the value of r 
changes in the range1 ≤r≤m. The rows of Table 2 are indexed by m, and the columns are 
indexed by  r.  If  we take  m =  5 and let  B1,  B2,  B3,  B4,  B5  denote the  r-Borda winners 
obtained by considering the first 1, 2, 3, 4, and 5 rows respectively, then B1 is the set of 
plurality  winners,  B  =  B5 the  set  of  Borda  winners.  We  can  read  off  the  Pr2 type 
probabilities for this case from the fifth row of Table 2 as 

Pr[B1=B] = 0.607, 

Pr[B2=B] = 0.759, 

Pr[B3=B] = 0.895, 

Pr[B4=B] = Pr[B5=B] = 1.

Figure 3 is a three-dimensional plot of the computed Pr2 type probabilities. We observe that 
as in the case of the Pr1 type probabilities, and for n fixed at 30, Pr2 → 0 as m gets large for 
fixed r, and the behavior is roughly as (1+r)/m.  We can make use of the properties of the 
analytic  approximations  for  the  Pr2  type  probabilities  and surmise  that  Pr2 probabilities 
should be well approximated by

                 Pr2 ~  f(m,r) =   r/m + 2.1/m                                                                    (5)

Indeed, the plot of this function in Figure 4 is a good approximation to the actual values in 
Figure 3.

Hence, for large values of n, the likelihood that an r-Borda winner (chosen at random 
from  among  all  r-Borda  winners)  is  one  of  the  Borda  winners  of  the  full  profile  is 
independent of n and increases as the ratio r/m increases. Our results show that, for r = m-2, 
Pr2 approaches one as  m increases. From our data it can also be conjectured that for any 
fixed k, Pr2 approaches 1 for r=m-k, but the rate of convergence decreases for larger k.

6. CONCLUDING REMARKS

The Borda rule is one of the most considered voting procedures in the theoretical 
literature of social choice. However, despite its well-known superiorities concerning the 
fulfillment of important positive and normative criteria, it is not a widely used procedure in 
the real world. There is no doubt that its requirement from the voters to report their full 
rankings over the possible alternatives can be blamed for this hesitation.

In  this  study,  we  attempt  to  empirically  investigate  the  extent  of  difficulty  in 
implementing Borda outcomes when voters are asked to rank only a specified number of 
alternatives. We consider the situations where n voters are required to report only the first 
r (1 ≤ r < m) ranks of their  linear preferences over  m alternatives. We assume that the 
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truncated individual preferences are aggregated through a Bordalike method which we call 
r-Borda  rule. We  generate  the  voters’  preferences  through  IANC  model  which  is  an 
equiprobability assumption neglecting the names of both alternatives and voters. 

The results of the Monte-Carlo experiments we run indicate that, for large values of 
n,   the  likelihood  of  choosing  exactly the  same  set  of  original  Borda  winners  by 
considering only the first r ranks of the voters’ preference orderings is independent of n, 
and it approaches to zero as m gets large for fixed r. Through least square fit method, we 
show that,  for any m, it is impossible to guarantee the exact Borda outcome with only 
partial  rankings  over  the  alternatives.  We observe  that  the  likelihood  that  an  r-Borda 
winner is  one of the Borda winners of the full  profile  is  also independent  of  n and it 
approaches to zero as  m gets large for fixed  r. Our results show that for  r = m-k, for  k 
fixed, this probability approaches one as m increases.  

There are some immediate directions for further research on the topic. First of all, 
although the r-Borda rule, as an equal-distance scoring method, is a quite “intuitive” way 
of aggregating the truncated preferences, empirical studies can be designed to compare the 
success of assigning different score vectors to the reported ranks for given triples of m, n 
and r from the perspective of implementing the Borda outcome. 

Second, the extent  of implementation problems associated with other well-known 
ranked rules can be empirically investigated. However, especially in the case of pair-wise 
majority rules (such as Condorcet rule), it should be noted that the methods to be used for 
aggregating truncated preferences is not as straightforward or intuitive as it is in the case of 
scoring methods since the lower-counter set cardinalities of the alternatives do not provide 
the sufficient information for determining the outcomes of such rules. Hence, there is a 
need for both theoretical and empirical research concerning the matter. 

The empirical research on the implementability of ranked voting rules with partial 
preference orderings can surely contribute to the literature for comparing these rule with 
the ones that permit truncated ballots.  
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0. 344 0.4 78 0.5 79 0 .69 1 0. 775 0.873 1. 1 .
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0. 259 0.3 8 0.4 71 0 .57 6 0. 664 0.741 0.8 23 0 .909 1. 1 .
0. 226 0.3 62 0.4 59 0 .54 8 0. 629 0.695 0.7 74 0 .838 0. 91 1 . 1.
0. 202 0.3 08 0.3 86 0 .48 9 0. 558 0.629 0.7 01 0 .772 0. 849 0 .90 4 1. 1 .
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0. 124 0.1 98 0.2 59 0 .30 9 0. 365 0.416 0.4 56 0 .5 0. 543 0 .59 6 0. 631 0 .66 2 0. 714 0 .75 4 0. 801 0.8 38 0. 873 0 .91 4 0.9 55 1. 1 .
0. 116 0.1 88 0.2 47 0 .29 8 0. 332 0.378 0.4 35 0 .471 0. 508 0 .56 2 0. 604 0 .65 5 0. 691 0 .73 0. 77 0.8 09 0. 85 0 .89 1 0.9 22 0.9 55 1 . 1 .
0. 089 0.1 7 0.2 22 0 .26 9 0. 319 0.361 0.3 9 0 .448 0. 495 0 .53 2 0. 573 0 .61 1 0. 657 0 .70 9 0. 753 0.7 79 0. 821 0 .87 2 0.9 04 0.9 3 0 .95 9 1 . 1.
0. 096 0.1 81 0.2 11 0 .25 1 0. 302 0.341 0.3 87 0 .437 0. 48 0 .51 7 0. 554 0 .60 1 0. 644 0 .68 8 0. 733 0.7 7 0. 804 0 .85 0.8 83 0.9 12 0 .93 4 0 .96 9 1. 1.
0. 107 0.1 7 0.2 16 0 .26 3 0. 302 0.329 0.3 8 0 .422 0. 459 0 .50 6 0. 549 0 .59 6 0. 635 0 .66 9 0. 704 0.7 38 0. 771 0 .81 1 0.8 35 0.8 74 0 .90 8 0 .94 0. 969 1. 1 .
0. 079 0.1 38 0.1 83 0 .22 0. 271 0.305 0.3 46 0 .38 0. 423 0 .45 4 0. 497 0 .54 3 0. 573 0 .60 2 0. 635 0.6 76 0. 715 0 .75 6 0.7 96 0.8 3 0 .86 6 0 .89 2 0. 925 0.9 62 1 . 1 .
0. 086 0.1 59 0.2 03 0 .24 8 0. 283 0.312 0.3 53 0 .383 0. 419 0 .45 5 0. 497 0 .53 4 0. 566 0 .59 8 0. 63 0.6 63 0. 703 0 .74 6 0.7 81 0.8 04 0 .85 3 0 .88 6 0. 911 0.9 36 0 .96 4 1 . 1.
0. 078 0.1 41 0.1 86 0 .23 2 0. 274 0.299 0.3 37 0 .369 0. 402 0 .43 8 0. 465 0 .50 9 0. 543 0 .57 4 0. 609 0.6 44 0. 675 0 .70 6 0.7 33 0.7 6 0 .79 9 0 .83 8 0. 88 0.9 1 0 .94 7 0 .97 1. 1.
0. 076 0.1 45 0.1 82 0 .22 9 0. 27 0.303 0.3 39 0 .383 0. 416 0 .44 4 0. 468 0 .50 7 0. 54 0 .58 3 0. 603 0.6 33 0. 672 0 .69 4 0.7 26 0.7 58 0 .79 5 0 .81 8 0. 851 0.8 81 0 .90 9 0 .943 0. 969 1. 1 .
0. 07 0.1 24 0.1 73 0 .21 4 0. 246 0.291 0.3 19 0 .34 0. 374 0 .41 8 0. 451 0 .49 1 0. 518 0 .54 7 0. 572 0.6 19 0. 648 0 .69 0.7 25 0.7 65 0 .79 9 0 .83 0. 849 0.8 78 0 .90 3 0 .917 0. 941 0.97 1 1 . 1.

Table 1: For 1 ≤m≤30, n = 30 and 1 ≤r ≤m, the behavior of the probability that the set of r-Borda winners is equal to the set of actual Borda winners. The 
rows are indexed by m, and the columns are indexed by r.



1.
1. 1.
0.844 1. 1.
0.685 0.87 1. 1.
0.607 0.759 0.895 1. 1.
0.537 0.663 0.788 0.907 1. 1.
0.474 0.618 0.706 0.827 0.919 1. 1.
0.429 0.545 0.643 0.754 0.837 0.928 1. 1.
0.371 0.475 0.582 0.666 0.761 0.849 0.936 1. 1.
0.352 0.444 0.533 0.63 0.715 0.796 0.877 0.954 1. 1.
0.313 0.428 0.519 0.602 0.681 0.754 0.827 0.893 0.96 1. 1.
0.285 0.362 0.44 0.54 0.604 0.678 0.749 0.82 0.893 0.954 1. 1.
0.278 0.372 0.445 0.512 0.579 0.647 0.712 0.774 0.84 0.906 0.971 1. 1.
0.278 0.36 0.422 0.489 0.563 0.626 0.678 0.743 0.812 0.871 0.932 0.971 1. 1.
0.252 0.318 0.395 0.462 0.522 0.592 0.655 0.716 0.773 0.82 0.863 0.913 0.967 1. 1.
0.225 0.301 0.386 0.437 0.483 0.541 0.616 0.676 0.74 0.784 0.839 0.904 0.944 0.982 1. 1.
0.239 0.301 0.37 0.418 0.476 0.529 0.582 0.631 0.681 0.73 0.785 0.842 0.891 0.931 0.976 1. 1.
0.187 0.264 0.328 0.371 0.428 0.483 0.535 0.586 0.644 0.698 0.745 0.794 0.854 0.898 0.928 0.97 1. 1.
0.196 0.257 0.309 0.365 0.423 0.48 0.542 0.584 0.635 0.684 0.736 0.779 0.822 0.875 0.909 0.946 0.979 1. 1.
0.18 0.247 0.299 0.36 0.42 0.469 0.506 0.547 0.588 0.639 0.679 0.728 0.776 0.819 0.862 0.908 0.947 0.983 1. 1.
0.192 0.25 0.303 0.355 0.406 0.446 0.485 0.529 0.576 0.627 0.669 0.699 0.75 0.797 0.839 0.88 0.914 0.954 0.984 1. 1.
0.173 0.231 0.281 0.323 0.36 0.409 0.465 0.503 0.541 0.591 0.634 0.683 0.724 0.766 0.807 0.844 0.883 0.928 0.956 0.984 1. 1.
0.151 0.211 0.259 0.302 0.347 0.385 0.423 0.475 0.522 0.558 0.601 0.645 0.687 0.745 0.782 0.813 0.857 0.908 0.934 0.965 0.987 1. 1.
0.154 0.222 0.252 0.291 0.334 0.371 0.424 0.47 0.51 0.551 0.593 0.635 0.681 0.719 0.765 0.802 0.838 0.883 0.915 0.942 0.964 0.99 1. 1.
0.154 0.212 0.247 0.293 0.325 0.354 0.4 0.446 0.48 0.531 0.573 0.617 0.66 0.692 0.728 0.76 0.797 0.837 0.869 0.902 0.938 0.966 0.989 1. 1.
0.127 0.172 0.213 0.256 0.301 0.333 0.377 0.409 0.447 0.486 0.53 0.576 0.604 0.64 0.673 0.714 0.751 0.793 0.837 0.87 0.902 0.93 0.962 0.988 1. 1.
0.135 0.195 0.233 0.271 0.305 0.338 0.38 0.408 0.45 0.484 0.523 0.557 0.593 0.623 0.656 0.692 0.735 0.774 0.81 0.838 0.886 0.917 0.94 0.967 0.989 1. 1.
0.129 0.179 0.22 0.261 0.295 0.32 0.362 0.393 0.423 0.459 0.49 0.534 0.57 0.602 0.631 0.667 0.704 0.73 0.758 0.792 0.829 0.868 0.911 0.94 0.97 0.99 1. 1.
0.132 0.184 0.219 0.259 0.298 0.335 0.371 0.411 0.443 0.472 0.499 0.539 0.579 0.616 0.638 0.668 0.7 0.727 0.765 0.796 0.832 0.858 0.89 0.918 0.946 0.972 0.99 1. 1.
0.127 0.168 0.207 0.251 0.279 0.322 0.349 0.368 0.406 0.448 0.481 0.52 0.549 0.576 0.603 0.648 0.678 0.724 0.758 0.795 0.832 0.861 0.882 0.914 0.936 0.952 0.972 0.992 1. 1.

Table 2: For 1 ≤m≤30, n = 30 and 1 ≤r ≤m, the behavior of the probability of the set of r-Borda winners to be a subset of the set of m-Borda winners. The 
rows are indexed by m, and the columns are indexed by r.
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Figure 1

Figure 2
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Figure 3
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Figure 4
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APPENDIX

Given  m and  n,  we compute  the  probability  that  GCD(m!,n) =  1,  i.e.  m! and  n are 
relatively prime. We assume that m is fixed and n is allowed to vary. As in the most cases 
with probabilities on integers, this probability is actually the density. Let S be a subset of 
the integers. The density of S (if it exists) is 

∞→n
lim

n

Sn

where Sn is the number of elements in the set S ∩ {1,2,..,n}. Thus, when we say that the 
probability of an integer to be even is ½, we mean that the density of even numbers is ½.

Proposition  Suppose  m is given. If  pk ≤ m < pk+1 where  pk denotes the  k-th prime 
number, then

         Pr [GCD(m!,n) =1] = )
1

1(
1 i

k

i p∏
=

−

Proof   Let S be the set of positive integers relatively prime to m!. We calculate Sn, which 
is the number of these less than or equal to n. Since pk ≤ m < pk+1, the prime factors of 
m! are p1, p2, ..., pk. Therefore, Sn is the number of positive integers less than or equal to n 
which  are  not  divisible  by  any  of  these  primes.  This  is  a  textbook  example  of  an 
inclusion-exclusion  problem  in  which  the  alternating  sum  of  the  inclusion-exclusion 
formula simplifies to 

        n )
1

1(
1 i

k

i p∏
=

− .

Hence, the probability is as stated in the proposition.

The following table gives these probabilities for small values of m:

m Probability that GCD(m!,n) =1
2

(1- )
2

1
= 

2

1

3
(1- )

2

1
(1- )

3

1
= 

6

1

4
(1- )

2

1
(1- )

3

1
= 

6

1

5
(1- )

2

1
(1- )

3

1
(1- )

5

1
 = 

15

2

6
(1- )

2

1
(1- )

3

1
(1- )

5

1
 = 

15

2



7
(1- )

2

1
(1- )

3

1
(1- )

5

1
(1- )

7

1
 = 

35

4

8
(1- )

2

1
(1- )

3

1
(1- )

5

1
(1- )

7

1
 = 

35

4

9
(1- )

2

1
(1- )

3

1
(1- )

5

1
(1- )

7

1
 = 

35

4

10
(1- )

2

1
(1- )

3

1
(1- )

5

1
(1- )

7

1
 = 

35

4

11
(1- )

2

1
(1- )

3

1
(1- )

5

1
(1- )

7

1
 (1- )

11

1
 

= 
77

8

These probabilities get smaller for increasing m, and, in fact, the limit is zero. To see this, 
note that 

∏
∞

=

−−
1

1)
1

1(
i ip

= ∞

since the left hand side is another way of writing the harmonic series. However, it is also 
the expression for the reciprocal of the limiting probability we are considering. Therefore, 
the probability that m! and n are relatively prime goes to zero as m increases.
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