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Abstract

A d-dimensional generalized cylinder is the Cartesian product of d graphs each of which is
either a path graph or a cycle graph. In this paper, we use a simple embedding technique to
find exact formulae for the edge-isoperimetric number and the bisection width of a cylinder
in certain cases, e.g. when the size of the largest factor is even.

The isoperimetric number and the bisection width of d—dimensional tori (products of cycle
graphs) and arrays (products of path graphs) are thus obtained as a byproduct under the same
conditions. We also give description of an isoperimetric set as well as a bisection.
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1 Introduction

Given a graph G and a subset X of its vertices, let X denote the edge-boundary of X, i.e. the set
of edges which connect vertices in X with vertices in V/(G) \ X. The edge-isoperimetric number,
or simply the isoperimetric number, of G is defined as '

10X|
= min .
1<pxi< e |X|

(G) (1)

That is, the set of vertices of G is partitioned into two nonempty sets and the ratio of the number
of edges between the two parts and the number of vertices in the smaller one is minimized. As
examples of isoperimetric numbers:

o i(Kg) = |‘§’| for the complete graph K with k vertices,
e i(P) = 1/|_§J for the path graph P, with k vertices,

e i(Cy) = 2/L§_| for the cycle graph Cj with k vertices.
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A subset X which achieves the minimum ratio in (1) is called an isoperimetric set. We refer
the reader to Mohar [15] or Chung [9] for a discussion of basic results and various interesting
properties of i(G) and to Bezrukov [6] for a comprehensive survey of this and related problems.
In this paper, we are interested in the isoperimetric properties of generalized cylinders which
are the Cartesian product of cycles and paths. The Cartesian product G x H of two graphs G and
H is the graph with vertex set V(G) x V(H), in which vertices (u,v) and (u, ") are adjacent if and
only if u is adjacent to v’ in G and v = ¢/, or v is adjacent to v’ in H and u = «'. The constituent
graphs G and H are called factors. A generalized d-dimensional cylinder, or simply a cylinderis a
d-fold product G¢ = Gk, X Gk, X - -+ x Gg, where each Gy, is either a path Py, or a cycle Cy, with
k; vertices. Figure 1 illustrates the 2-dimensional cylinder P; x C3. Note that, the d—~dimensional
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Figure 1: The 2-dimensional cylinder Py x Cj.

array A% = Py, x P, x --+ x P, and the d-dimensional torus Cce = Ck, X Cg, X -+ x Cy, are
special cases of generalized cylinders.
In this paper, we prove the following theorem by a purely combinatorial method.

Theorem 1 Given a cylinder G4,
o if G4 is a d-dimensional array, i.e. G4 = Py, x -+ x Py, with ky > k; and k; even,

i(GY) =i(P,) = f—l (2)

o if G% is a d-dimensional torus, i.e. G% = Ciy x - xCy, withly 2 1; and l; even,

. . 4
i(G%) =1i(Cy,) = I 3)
¢ ifGl=P, x---x P, xCy x--xCp, whered=r+s5, ky > ki, l; > 1,
2 .
e~vdy . . _ kr ‘lf 2k1 > 11 and kl even,
HG) = min{i(Py,),i(Cy,)} = { [31-1 if I1 > 2k, and l; even. (4)



e The cardinality of the isoperimetric sets of G¢ in equations (2),(3) and (4) is |V (GY)}/2.

We also give a description of these isoperimetric sets. »

As a corollary of Theorem 1, we obtain also obtain formulas for the bisection width of G®. The
notion of bisection width and its relationship with the notion of isoperimetric number is explained
in the next section. We start with the motivation behind this work.

1.1 Motivation

E]

The notion of the isoperimetric number of a graph G serves as a measure of connectivity of G as
it quantifies the minimal interaction between a set of vertices X and its complement VIG)\ X
in terms of the number of edges between them. This idea is also important in algorithm design.
For instance, the notion of isoperimetric number is implicit in the divide-and-conquer strategy in
graph algorithms. To illustrate, consider an algorithm which adopts divide-and-conquer strategy
where the set of vertices of the underlying graph is split into two balanced parts such that the
algorithm can be run on the two corresponding subgraphs recursively, and the results are combined
to get the solution for the original problem. The combining of results at the last step needs to
be carried out with minimal effort if such a scheme is expected to be efficient. It is desirable to
split the graph in such a way as to keep the interaction between the two partitions (in terms of
the number of edges connecting them) as small as possible.

The isoperimetric number is also closely related to the notion of the bisection width, bw(G),
of a graph G. This is the minimum number of edges that must be removed from G in order to
split V(G) into two equal-sized (within one if |V (G)| is odd) subsets. If known, one can use the
isoperimetric number of a graph G to establish a lower bound for its bisection width using the

fact that
V(G|

bw(G) > i(G) [—Z-j . (5)

In fact, directly from inequality (5) and Theorem 1 we obtain the lower bounds which yield the
exact expressions for the bisection width given as Corollary 1. ’

Corollary 1 Given a cylinder G¢ with n vertices,

e if G¢ is a d—-dimensional array, i.e. G% = Py, x -+ X Py, with ky > k; and k; even,

n
ky

bw(G?) =
e if G% is a d-dimensional torus, i.e. G%=Cj x---x Cy withly 2 1; and 1} even,
bw(G?) = 22
ly
¢ if GE=P, x - x P xCp x---xC, whered=r1+3, k; > ki, then

n -
dy _ ) Fi if 2ky > 11 and k; even,
buw(G") { Zﬁ if 11 > 2k; and [, even.

As with the case of isoperimetric sets, we also identify an optimal bisection for Ge.



1.2 OQutline

The outline of the rest of this paper is as follows. In Section 2 we give a summary of previous work
on isoperimetric properties of various families of product graphs. The proof of our main result
appears in Section 3. In Section 4 we give the cardinality and the description of the isoperimetric
sets of a cylinder, as well as the subsets achieving the bisection width. In Section 5, we give
conclusions and future research considerations.

2 A summary of previous work

There has been a significant amount of research in the area of isoperimetric problems in various
popular classes of graphs such as arrays and tori. The isoperimetric number and the bisection
width of graphs are intimately related to the theory of eztremal sets in graphs. An extremal set
of a graph for a given m is, in a broad sense, a configuration of m vertices with

¢ minimum number of boundary edges, or

¢ maximum number of spanned edges

among all such m-vertex subsets of the given graph. Specifically, one can easily obtain the
isoperimetric number of a given graph if the extremal sets minimizing the number of boundary
edges are known (and the boundary is actually computable). An extremal set X with LMZEMJ
vertices in a given graph G is a bisection of G.

The problem of finding extremal sets of the first (or, second) type is called the minimum-
boundary-edge problem (or, the mazimum-induced-edge problem). It has been shown that the
minimum-boundary-edge and the maximum-induced-edge problems are equivalent for regular
graphs (8]. .

The maximum-induced—edge problem (hence the minimum-boundary-edge problem, because
of its regularity) for the hypercube (d-dimensional binary Hamming graph) was solved by Harper
[11] and extended by Lindsey [14] to the d-dimensional k-ary Hamming graph. In both instances,
there is a nested structure of solutions, and the set of the first m vertices in lezicographic order
constitutes an extremal set. The maximum-induced—edge problem for the d—dimensional k-ary
array A¢ was first solved by Bollobas and Leader [8]. Since A¢ is not regular, this result does
not automatically give a solution to the minimum-boundary-edge problem. It was later extended
to general arrays by Ahlswede and Bezrukov (1] who also gave a solution for Py, x P, for the
minimum-boundary—edge problem.

The first nontrivial bounds on the minimum-boundary-edge problem for the d—-dimensional
k-ary arrays were given by Bollobds and Leader [8]. In fact, the results given in this paper are
implied ([12]) by the results obtained by Bollobds and Leader in [8]. The technique used in [8]
involves the solution to the continuous analogue of the minimum-boundary—edge problem and,
for a subset X, |X| < |V(G%)|/2, results in lower bounds of the form

10X| > min{|X|'"Yrrk/D-1 r =1, d) (6)

which are tight for the cases we are interested in. Note that Bollobas and Leader’s result is more
general than finding the isoperimetric number. However, as we shall show in this paper, if one is
merely interested in obtaining an exact formula for the isoperimetric number itself then a direct
combinatorial embedding technique suffices.

Finally, we remark that similar problems have been defined in the literature for the vertex-
boundary of a given configuration of vertices.



3 The isoperimetric number of a cylinder

We shall focus on proving equation (4) of Theorem 1, since equations (2) and (3) are proved using
essentially the same technique. Specifically, we will prove the following.

Proposition 1 Given a cylinder Go = Py X xP, xCpy x---xCp, withd=r+3; k1 > ki,
L 24,

if 2k; > 11 and k; even,

if Iy > 2k, and [ even. Y

b oo

i(G%) = min{i(Py,),i(Cy,)} = {

o~
oy

Proof We prove this by showing that the expressions on the right-hand side are both lower and
upper bounds for i(G%). We use the following well-known result to prove the upper bound.

Z(Gl X G2 X X GT) _<_ min{i(Gl),i(Gg), ce ,i(GT)} (8)

See Chung [9] for a proof of (8). Clearly, i(P,) = mini{i(F,)} and i(Cy,) = min;{i(Cy,)}. If
2ky > 1} then i(Py,) < i(C},) and for even k; we have,

i(G?) < k% = i(P,) = min{i(Py,), .-, i(P:,),i(C), - --,i(Cy,)}. (9)
Similarly, if {; > 2k; and [, is even then,

i(G%) < % = i(Cy) = min{i(Pe,),. . i(Pe.),i(Ch)s- - i(CL)}, (10)
since #(Cy,) < i(Py,).

To prove the lower bound, we extend an embedding technique which Leighton used in [13] to
obtain a lower bound for the bisection width of arrays. Specifically, we embed a directed complete
graph K, with n vertices into G where n is the number of vertices of G¢. Analogous to the case
of an undirected graph, for a directed graph G, we define X to be the the number of directed
edges which connect a vertex in X with a vertex in V(G) \ X, or vice versa. Any partition of
vertices in K, induces a partition in G¢ as a result of the embedding. Using this, we argue that
the number of boundary edges in a partition of vertices in G¢ cannot be less than that of K,
divided by the congestion of the embedding. The congestion is the maximum number of edges of
K, routed through any edge of G¢.

Before we describe our embedding, consider a nonempty subset X of vertices of G¢ with
|X| < n/2. Let X' be the subset of vertices of the complete graph associated with the vertices in
X as a result of the embedding. Note that |0X'| = 2|X'|(n — |X'|) and |8X]| > |0X'|/c where c
is the congestion of the embedding. Therefore

16X1 _ 19X'] | 21X'|(n — |X"])
IX] ~= oX| ™ c|X|

Since |X| =|X'| and 1 < |X| < n/2,

2X'(n - 1X") _ 2 - 1X")) 25 _n
c| X| c ~c ¢

Thus we have,
i(GY) >

n
[



The embedding we describe next has congestion ¢ with

o= n%l if 2k, 2 11 and k; even,
n% if Iy > 2k; and I even.

which, when combined with (12), yields the desired lower bound. 0

The details of the embedding are given next.
L}

3.1 Embedding a directed complete graph into a cylinder

Given a generalized cylinder G¢ = Py, X -+- %X P, x Cpy x ---x C), where d = r + s, for notational
convenience let ky4; := [; for 1 < i < s. We identify each vertex v by a label (v1,...,vq4) where
0<wv; <kj—1for 1 <i<dasshown in Figure 1. Note that there are a total of n = k1ka--- kg
vertices.

We embed into G¢ a directed complete graph K, with n vertices where the vertices are
identified with the vertices of G¢. The edge from node u = (uy,...,uq) to node v = (vy,...,v4)
of K, is embedded by using a left—to-right dimensional routing scheme. That is, first the value
u; is “corrected” into vy, then ug into vq, and so on, until all u; have been corrected.

When correcting u; into v; for 1 < i < r, (i.e. when the factor in the ith dimension of the
cylinder is a path) the correction is done by taking the (unique) shortest path between u; and v;.
In other words, u; is incremented (or decremented) until it becomes equal to v;. If r+1 < i < r+s,
since the ** factor is a cycle, there are exactly two shortest paths between u; and v; when they
are diametrically opposite and k; is even. For instance, take k; = 6, u; = 2 and v; = 5 as shown
in Figure 2. The shortest paths between vertices 2 and 5 are 2-3-4-5 and 2-1-0-5. In all other

Figure 2: The cycle with 6 vertices and embedding of edge (2, 5).

cases the shortest path is unique. To avoid ambiguity when there are multiple shortest paths,
we always take the one with increasing label values (transition from k; — 1 to 0 is assumed to be
increasing, whereas a transition from vertex 0 to k; — 1 is decréasing.) Thus, in our example, the
path 2-3-4-5 is taken as shown in Figure 2. We next prove the congestion lemma.

Lemma 1 Let ¢ be the congestion of the embedding of an n-vertez directed complete graph K,
into a cylinder G¢ = Py, x -+ x P, x Cy x -+ x Cy, with n vertices, as described above, where



d=r+s, ki > k; and l; > l;. Then we have,

n4 if I > 2k, and [ even.

c= { n%‘- if 2k1 > 11 and k1 even,
1

Proof For convenience, we again take kry; = [; for 1 < i < s. Define ¢; for 1 <1 < d to be the
maximum number of edges of K, embedded in any edge in the i* dimension of G¢. It suffices to
show, for 1 <: < r,

ol

if ki ts even,

n
c"”{ nSEL if ks odd.

ke

andforr+1<1<r+s,

bl

k2-1

ng if ki is even,
cl: =
N if k; 1s odd,

since, if these hold, then

n&  if 2k; > 1) and ki even
- = 2 = ’
¢ lnsl?é{d{ct} { n% if Iy > 2k; and |1 even
as desired.
Let e = {(e1,---,€i,---,€4),(€1,...,€ +1,...,€e4)) be an edge of G% in the ** dimension.

Also, let u = (u1,...,uq) and v = (vy,...,v4) be two distinct nodes of the complete graph for
which the embedding results in the directed edge from u to v to be embedded through e. Note
that ¢; is the maximum number of such (u, v) pairs. Since routing is done in a left-to-right fashion,
we must have

Ui+l = €141 V=€
Ui42 = €iy2 v2 = €2
Ud = €4 y Viel = €4—1

along with either u; < e; and v; > e; + 1 or v; < ¢; and u; > e; + 1 depending on the di-
rection of the embedded edge, i.e. {(u,v) or {v,u). This leaves kj---ki—1kit1---kq choices for
ULy ooy Uis1, Vitl, -y Vd-

The number of choices for u; and v; depends on whether the it* factor of G4 i3 a path or cycle.
If it is a path then u; and v; can be chosen one of

(e; + 1) (ki — (e; + 1)) + (ki — (es + 1)) (ei + 1) = 2(ei + 1)(ki — ;s — 1)

different ways. From an analysis of the extreme values of 2(z + 1)(ki —z — 1) on 0 < z < k;, we
have

ol

if ki is even,

2(e; + 1)(ki—e;—1) <
->— if ki is odd

Therefore for 1 <7 < r,

n’—‘zi if k; is even,
k2

= Ky kioikiot - kql2(e; + 1) (k; —e; - = _ ‘
G Ine?-x{ 1 i—1Ri+1 d( (ei +1)( e 1))} {n—ﬁc—}- if ki is odd.



as desired. If the " factor of G% is a cycle then the number of ways u; and v; can be chosen is
exactly
ki (ks ki (&
§(5+1) 5(-1 _»

2 2 4

when k; is even, and
ki—1 k;+1 ki—1 k;+1 k2 -1
z 2 7 2 _ &
2 2 4 N

when k; is odd. Thus, for r + 1 <1 < d, we have

n%i 1f ki is even,
G = k2-1 . .
nig- if k; 15 odd

as needed. O

The proof of our main Proposition 1 now follows by combining the congestion lemma with the
inequality (12), which gives the lower bound i(G%) > min{i(P),i(C)}, and the two inequalities
(9), and (10) which give the reverse inequality (G%) < min{i(P),i(C)}.

4 Isoperimetric sets, their cardinalities and the bisection width
Proposition 2 The cardinality of the isoperimetric sets of G in equation (7) is |V(G%)|/2.

Proof An isoperimetric set must make the two sides of inequality (11) equal, which can happen
only if it has |V (G%)|/2 vertices. a

Even though any isoperimetric set must have cardinality |V (G?)|/2 vertices, because of the struc-
tural symmetry of cylinders, there may be multiple isoperimetric sets. For G¢ = Py, x - -- X Py, X
Ci, x -+ x C|, where d = r + s, the set X given below is an isoperimetric set.

X = {u=(u1,...,ud)|u1<%’-} if 2k, > 1) and k; even,
- {u=(u1,...,ud)|ur+1<%} if Iy > 2k, and |y even.

It can be seen that the partition (X, X) is indeed a bisection achieving the bisection width of G4
given in Corollary 1.

5 Summary and future considerations

We have used an embedding technique to calculate the isoperimetric number of a large subclass of
generalized cylinders. This class includes d-dimensional tori and d-dimensional arrays in which
the size of the largest factor is even.

We remark that this embedding technique does not work when the largest factor in the product
has an odd number of vertices. Interestingly, the inequalities (6) are not sharp enough to obtain
the isoperimetric number in this case either. Ultimately it would be desirable to show that
G4 = Gg, x Gi, X -+ X Ggyy

i(G) = min{i(Cy,)}

v



for any generalized cylinder regardless of the parities of the factors involved.

We have recently proved in [5] that for d-dimensional arrays the above formula holds, i.e.
i(Pg, X -+ x Pg,) = min;{i(P,;)}. In order to obtain this result, a different notion of extremal
sets, namely extremal sets minimizing dimension-normalized boundary in Hamming graphs (4] is
utilized. The technique used involves embedding a Hamming graph into the array and associating
the extremal sets of the Hamming graph with the isoperimetric sets of the array. We suspect that
this technique generalizes to the case of the generalized cylinders as well. This work is in progress.
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