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The Kostka matrix K relates the homogeneous and the Schur bases in the ring of symmetric functions 
where K,., enumerates the number of column strict tableaux of shape i, and type p. We make use of the 
Jacobi-Trudi identity to gibe a combinatorial interpretation for the inverse of the Kostka matrix in terms 
of certain types of signed rim hook tabloids. Using this interpretation, the matrix identity K K - '  = I  is 
given a purely combinatorial proof. The generalized Jacobi-Trudi identity itself is also shown to admit 
.a combinatorial proof via these rim hook tabloids. A further application of our combinatorial interpretation 
is a simple rule for the evaluation of a specialization of skew Schur functions that arises in the computation 
of plethysms. 

INTRODUCTION 

In this paper, we first give a combinatorial interpretation to K - ' :  the inverse of 
the Kostka matrix. This interpretation is then utilized to show combinatorially that 
KK- '  =I.  Our point of departure is the Jacobi-Trudi identity, which gives a 
determinantal expansion of a Schur symmetric function in terms of the homogeneous 
symmetric functions. In turn, we provide a combinatorial proof of the generalized 
Jacobi-Trudi identity itself by a natural sign reversing involution on a class of signed 
tabloids. 

In recent years, there has been considerable success in providing combinatorial 
proofs of symmetric function identities which express some given symmetric function 
as a determinant of other symmetric functions. Most notably, Gessel and Viennot 
[6], [7] used the approach that various determinants that arise in a number of 
combinatorial settings could be interpreted as weighted sum of k-tuples of paths. 
Certain natural involutions on these spaces have the effect of canceling out various 
terms with opposite sign, leaving a subclass of the original set of paths which is then 
shown to correspond to the objects under consideration. In certain other expansion 
formulae involving symmetric functions such as the Giambelli identity [8], sign 
reversing involutions are defined directly on classes of signed tabloids [4], [ 5 ] .  In 
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both settings, natural involutions usually provide extra combinatorial information 
and interesting generalizations that are not evident in purely algebraic treatments. 

Our interpretation of K-'  is in terms of a special class of rim hook tabloids and 
the involution that we construct to give a combinatorial proof of K K - I  = I relies 
on a sign reversing involution on pairs of adjacent special rim hooks. Indeed, we 
show that the basic idea of our sign reversing involution extends to filled rim hook 
tabloids to give a proof of the Jacobi-Trudi identity itself. That is, we show that the 
terms arising from the determinant of the generalized Jacobi-Trudi identity can be 
interpreted as special rim hook tabloids where each rim hook is filled with a weakly 
increasing sequence. We then give a sign reversing involution on such filled rim hook 
tabloids whose fixed points are precisely the column strict tableaux. We note that 
our involution to prove the generalized Jacobi-Trudi identity can be viewed as a 
translation of the GesselLViennot proof, where instead of using k-tuples of weighted 
paths to interpret the terms of the determinant, we interpret them directly as fillings 
of the Ferrers' diagram. 

The outline of this paper is as follows: We deal with preliminaries and establish 
our notation in Section 1. In Section 2, the combinatorial interpretation of K-'  is 
given, followed by a combinatorial proof that KK-' = I  in Section 3. In Section 4 
we construct our sign reversing involution and prove the generalized Jacobi-Trudi 
identity. In Section 5, we give an application of our results by describing a simple 
algorithm to compute S,,,(l, o, . . . , oP-I) where o is any primitive pth root of unity. 

1. PRELIMINARIES 
k 

Let E. = (0 < i, d . . . < i,,) be a partition of n, i.e., n = /i = jWi. Each one of the 
i =  1 

integers ii is called a part of 2 .  We take ii = 0 for i < 0. If i" is a partition of n, this 
is denoted by I-In. An alternate notation for I. is i = 141242. . .kqk where q i  is the 
number of parts of 2 of size i. 

The Ferrers' diagram of shape I", denoted by F , ,  is the set of left justified rows of 
squares of cells with ii cells in the ith row from the top for i = 1, . . . , k. For example, 

FIGURE 1.1. 

In this context, the pair (i, j) denotes the cell in the ith row and the jth column of 
F,, where we label the rows from bottom to top and the columnsfrom left to right. 

Given partitions L = (0 < < . . . d Iwk) and p = (0 < p, < . . . d pi), we write p c 2 
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if 1 < k and p, - c i  - < ik-(i- ,) for i = 1, . . . , 1. The skew diagram F,,,, of shape 1./p 
will consist of cells of F, that remain after the cells of F, are removed. For example 

FIGURE 1.2 

We can think of any partion jv as the skew shape 14125. A dominates p  if 
l . k + i k - l + ~ ~ ~ + j ~ k - r ~ p l + p l - l + ~ ~ ~ + p r - r f o r  all i B 0 .  

A rim hook H of a partition 2 is a consecutive sequence of cells on its North-Eastern 
rim such that any two adjacent cells of H share a common edge, and the removal 
of H from F, leaves a legal diagram. H is a special rim hook if it starts in the cell 
(i,, 1). The number of rows of a rim hook H is referred to as its height, denoted by 
ht(H). The special rim hooks of the partition i = 123' are illustrated in Figure 1.3. 
These notions generalize naturally to skew shapes. 

A tabloid T of shape 2/p  is a filling of FA,, with positive integers. T is of type 
p = l q l .  . . i q l .  . . , if i has frequency q, in T. K ,  denotes the entry in the ( i ,  j)th cell of 
T. A tabloid T of shape i / p  is a column strict tableau if the entries of T are weakly 
increasing in each row from left to right and strictly increasing in each column from 
bottom to top. For any tabloid T of shape 1./p, we define the weight of T by 
w(T)= n XT,, 

( I , J ) E F ,  

The Schur function S, of shape 1. is defined by 

where the summation is over all column strict tableaux T of shape i. Similarly, 
whenever p  r i., the skew Schur function S,,,(x) of shape i / p  is defined by 

FIGURE 1.3 



where the summation is over all column strict tableaux T of shape IJp. The 
homogeneous symmetric function h,(x) corresponding to a partition i t n is given by 

k 

h,(x) = n h,,(x), 
1 = 1  

(1.3) 

where 
h,(x) = C x,,x,; . .xLV. 

0 < 1 1 9 1 2 <  $1,. 

(1.4) 

Both (S,),tn and (h , ) , kn  are integral bases for the space of symmetric functions, 
homogeneous of degree n. The integral transition matrix K relating the Schur and 
the homogeneous bases via (h,),i_n = (S,),k,K is known as the Kostka matrix [ l o ] .  
If p = (0 d p1 < . . . d pn) and are partitions of n, then K,,, is the number of column 
strict tableaux of shape A and type 1P12M2. . .nwn. A fact which is well known and 
which we shall use later is that for any permutation a of the index set { I ,  2, . . . , n}, 
we have 
K,,, = number of column strict tableaux of shape i and type 1p12w2. . .npn 

= number of column strict tableaux of shape 1. and type 1"'1'2pe'2'. . .n@oln'. (1.5) 
A combinatorial proof that the number of column strict tableaux of shape A is 
invariant under permutations of the type may be found in [ I ] .  For the combinatorics 
of Schur functions see Stanley [12].  The theory of symmetric functions is covered in 
detail in Macdonald [ l  11. 

2. A COMBINATORIAL INTERPRETATION OF K-'  
We define a special rim hook tabloid T of shape p and type i = (0 < I., 6 . . . d 2,) 

as a filling of the Ferrers' diagram F, of p repeatedly with rim hooks of sizes 
I?.,, I",, . . . , i,) such that each rim hook is special, i.e. has at least one cell in the 
first column. To be more precise, a special rim hook tabloid T is constructed 
recursively as follows. First we pick a special rim hook H1 in F, and remove the cells 
of H, to produce a Ferrers' diagram of shape p''). Then the process is repeated for 
F,"', i.e., we pick a special rim hook H, of F""', remove the cells of H, to produce 
a Ferrers' diagram of shape F"", etc. We continue this process until we produce a 
filling T of all the cells of F, with special rim hooks H I ,  H,, . . . , H,. The type of T 
is . if ( 1 ,  H . . . , H )  arranged in weakly increasing order produces the 
partition 1. 

Note that the above definition can be extended to skew shapes i by requiring that 
each rim hook have a cell bordering the Western boundary of i. 

Example There are 2 special rim hook tabloids T of shape p = 334 and type 
3. = 2'45 : 

T ,  = T, = 

FIGURE 2 1 
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The sign of a rim hook H is taken to be (-  l )h"H' l  as usual. The sign of T is the 
product of the signs of the rim hooks of T. Thus 

Note that for a special rim hook tabloid, we are only interested in the sizes of the 
rim hooks and not their order. This is in contrast to the usual notion of a rim hook 
tableau of type 2. For example, when A = 2'45 and p = 334, the rim hook tableaux 
in the usual sense are built from 

FIGURE 2.2 

where these are placed in their natural order in F, so that in each step we have a 
legitimate shape. Thus the usual rim hook tableaux of type 2 and shape p would be 
the following : 

FIGURE 2.3 

is not legal in the usual definition. 

A tabloid like TI, i.e. 

2 

3 3 3  
-- 

2 3  

1 4 1  

1 1 4  4 

FIGURE 2.4. 
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Note that if T is a special rim hook tabloid of shape p and type 2, then 2 necessarily 
dominates p. The matrices K and K-'  for n = 5 are given in Figure 2.5. 

I{ 

FIGURE 2.5. 

where the summation is over all special rim hook tabloids of' type 2 and shape p. 

Proof We have that (h,) = ( S J K  so that (S , )  = ( h , ) K - l .  Hence K,: is the 
coefficient of h, in the expansion of the Schur function S, in terms of the homogeneous 
symmetric functions. 

Recall that the classical Jacobi-Trudi identity [9], [13] furnishes a determinantal 
formula for S, in terms of the homogeneous symmetric functions. More precisely, if 
p = (pl ,  p2, . . . , pk), then the Jacobi-Trudi identity reads 

S, = detl / I , , + ~ - ~ / .  (2.3) 

Expanding the determinant with respect to the first row we find that 

Note that for each j with 1 b j d k, the quantity pj + j - 1 is the length of the rim 
hook that starts in cell (p,, 1 )  of p and ends in the jth row from the top. The shape 
(pl - 1, . . . , pj- - 1,  pj+ l ,  . . . , pk) is the resulting diagram obtained by removing 
this rim hook from the Ferrers' diagram of p. 
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= h 2 S ( 2 , 3 , 4 ) -  h3S(1,3,4) + h ~ S ( 1 , 1 , 4 )  - h 7 S ( 1 , 1 , 2 ) ,  

with the correspondences 

FIGURE 2.6 

Thej th term ( - l ) J - l h p J + j - ~ s ( p l - ~  ,.,,, , , - l - ~ , p , + l  ,..., pkl in the summation (2.4) has 
sign (- and j is precisely the height of the special rim hook which starts in the 
top cell of the first column of F,, and ends at the end of the jth row of F, starting 
from the top. Thus the sign of the jth term in the sum (2.4) is just the sign of the 
corresponding special rim hook. 

Now taking the coefficient of h, on both sides of (2.4), we see that K,; satisfies 
the recursion 

k 

where i/[j] denotes the partition which results from A by removing a part of size j 
if 2 has such a part. If ). has no part of size j ,  then we make the convention that 
K ; & ,  = 0 for any partition p.  

In fact, it is easy to see that the recursion (2.5) for K,: together with the fact that 

(since S(,, = h,) completely determine K,:: for all 1. and p. Here x (S )  is the indicator 
of the statement S ,  i.e., x (S )  = 1 if S is a true statement and x ( S )  = 0 otherwise. 

Now define 
Dl.,, = C sign(T) (2.7) 

T 

where the summation is over all special rim hook tabloids T of type 2 and shape p. 
Then it is not difficult to see that 

Thus K,: = D,,, as claimed. rn 
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One of the advantages of having such a combinatorial interpretation for K,: is 
that it allows one to easily calculate K,<j for specific i and ,u by hand. Moreover, 
our interpretation allows us to give exact formulae for K l j  for many special cases 
of 1. and ,u. For example, it is clear that the only special rim hook tabloid of shape 
3, and type i is the one where all the rim hooks are horizontal. Thus K,: = 1. If i 
or p is either a single row or a column, it is easy to see from our interpretation of 
K,: that the following holds: 

if ,u = (Ik, n - k) with 0 6 k < n, 
otherwise, 

Proof Since each rim hook of a special rim hook tabloid must start in the first 
column, we see that K,: f 0 implies k(2) 6 k(p). Now (i) and (ii) follow from this 
observation. For (iii), note that if there is only one rim hook in T, then T must have 
the shape of a hook. For (iv), we observe that in a special rim hook tabloid of shape 
(1") all rim hooks are vertical, so the number of special rim hook tabloids of type 
(1"'. . . nXn)  is just the number of permutations of the multiset ( la ' ,  . . . , nXn) .  . 

We can also give explicit formulas for K,;: when I. is a hook, a 2-row, or a 2-column 
shape. A direct application of Theorem 1 where 2 is a hook shape gives 

COROLLARY 2 If s 2 2 then 

1 - s + 1) if ,u = (I"), 
- 1 

if , u = ( l " - " k , 2 k , ~ - k ) w i t h 0 6 k 6 s - 2 ,  

otherwise. 

For 2-column partitions we have 

Proof First observe that if ,u has a part of size 3 or greater, then there are no 
special rim hook tabloids consisting of rim hooks of sizes 1 or 2. Now if p = (1T2'), 
it is easy to see that the only way to fill ,u is to have horizontal rim hooks of size 2 
in the bottom t rows. Thus we must have t 6 1 and all the remaining 1 - t rim hooks 

of size 2 must be placed vertically in the first column. Clearly there are t - L+ kl 
ways to arrange these 1 - t rim hooks of size 2 with the k rim hooks of size 1 to fill 
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the remaining cells in the first column. Furthermore the sign associated to all such 
tabloids is (- I)'-*. rn 

The following corollary for 2-row shapes can be proved by a case by case analysis: 

( -  1 ) "  i f  p  = ( I n + ' ,  n - 1) 
with I d n - 1 6 n ,  

i f  p = ( 1 r , 2 k , n - r - k , n - k )  
with O < k < n - 1  and 2 < n - r - k ,  

otherwise. 

I f  in < n ,  

( - l ) l f n - ' 2  i f  p= ( l n f l ,  m -  1)  
with 1 6 m - 16 m, 

( -  l ) k + m - 1  if p  = ( l m + k ,  n  - k )  

with m 6 n - k d n ,  

\ 0  otherwise. 

(4 = ' 

Finally, we should note that the fact that KG,:,,, is either 0, 1 ,  or - 1  can be 
generalized: 

(- 1 y  if p = ( 1 r , 2 k , 1 ~ z - ~ - k , n - k )  
w i t h O < k < n - 1  and 2 d m - r - k ,  

( - I ) ? +  if p = ( 1 r , 2 k , m - k + 1 , n - k - r + 1 )  
w i t h O < k < m - 1  a n d m - k d n - r - k ,  

COROLLARY 5 
K(;; ,~  = 0 ,  or - 1. 

Proof The proof follows by noting that if all rim hooks are of the same size, then 
there is at most one special rim hook tabloid of shape p for any p. 

The one drawback to our combinatorial interpretation is that there can be some 
cancellation in the computation of the sum K,: = 1 sign(T) where T runs over all 

T 

special rim hook tabloids of type E, and shape p. However for small values of n  such 
cancellations are rare. For example, it is easy to see from the ideas for the proofs of 
Corollaries 1-4 that this never happens if 2 is a hook, a 2-row, or a 2-column shape. 
Indeed, the smallest cancellation is when n  = 6, in which case there is only one such 
example, namely 2 = ( 1 , 2 , 3 ) ,  and p = ( I 2 ,  2'). We then have two special rim hook 
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tabloids of shape I. and type y which have opposite signs: 

FIGURE 2.7. 

Thus K,,12,31,(12,22) = 0. Similarly for n = 7, there are exactly two such canceling pairs. 
Namely, for = (1,2,4) and y = (1, 23), we have two special rim hook tabloids with 
opposite signs, 

FIGURE 2.8. 

and for 2 = (I2, 2 ,3)  and p = (I3, 22) there are two special rim hook tabloids with 
opposite signs: 

FIGURE 2.9 

3. A COMBINATORIAL PROOF THAT K K - ' = I  

Here we must show that 
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where the summation runs over all pairs ( P ,  T )  in which 

(i) T is a special rim hook tabloid of shape ,u = (0 < p, ,< . . . ,< p k )  and type v, 
(ii) P  is a column strict tableau of shape 2, and type lq12q2. . . k q k ,  where qi is the 

length of the special rim hook that starts in the ith row of p reading from 
bottom to top. We put q, = 0 if there is no such special rim hook. 

Note that in this section, we are ordering the rows of F, from bottom to top. As 
an example, for the special rim hook tabloid T of Figure 3.1, we require the 
corresponding column strict tableau P  to have type 23365766. 

FIGURE 3.1 

Observe that in (3.1), we are explicitly using (1.5), i.e., that for any permutation 
o of (1 ,2 ,  . . . , n), K,,,  equals the number of column strict tableau of shape L and 
type 1 p n u 1 2 p n ' 2 1 ~ .  .nfi0("', because we allow the type of a column strict tableau P in a 
pair ( P ,  T )  to depend on T. 

Now consider the following involution on such pairs ( P ,  T). 
Consider the first (bottommost) row of P. If the first row of P  consists entirely of 

l's, then ( P ,  T )  will be a fixed point of our involution. Otherwise, let r + 1  be the 
largest integer in the first row of P  not equal to 1. The involution is defined according 
whether or not r also appears in P.  

Case I r is also in P :  

In this case, we shall map the pair ( P ,  T )  to a new pair (P ' ,  T'). T' is produced 
from T as follows: Consider the two special rim hooks Hr and H,,, which start in 
the rth and the r + 1st rows in the first column of p. Note that H, and H,,, exist 
since both r and r + 1 appear in P. 

Suppose H,,, ends in row j and Hr ends in row i in T. Note that we must have 
j < r + 1 and i < r .  We claim that there is only one other way to cover the cells 
occupied by Hr and H r + ,  by two other special rim hooks H: and H:,, which start 
in rows v and r + 1 respectively. A picture will make this clear. There are two subcases 
to consider: 



Subcase (a) i < j :  

Y+1 0-0-0 IJir+l 0-0-0 

y 0--0 b-0 b-0 

L o  + role i o-o - rolr '  1 

FIGURE 3.2. 

Here HL+ , will end in row i and H: will end in row j - 1. 

Subcase (b) i 3 j :  

Y + 1  0-0-0 fI1,+l 0 - 0 0  

b + ro lb  J - 1 0 2 1 1  j 

FIGURE 3 3 

In this case, H:+, ends in row i + 1 and Hi ends in row j. 
We should also note that a special sub-subcase of Case (a) arises when Hr+,  consists 

of a single cell. The switch here takes the form of gluing together Hr+,  and Hr to 
obtain HL+, . We technically think of H: as the empty special rim hook. In pictures 

0-0-0 0-0-0 

FIGURE 3.4 

Note that in each case the following properties hold: 

(1) sign(Hr) sign(H, + ,) = - sign(H:) sign(HL+ ,), (3.2) 
(2) q:=qr+1-1, q:+1=qr+1. (3.3) 

This transformation taking H, and Hr+,  to the pair Hi  and H i + ,  will be referred 
to as switching the rth and the r + 1st special rim hooks in T Thus switching the rth 
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and the r  + 1st special rim hooks in a special rim hook tabloid T results in a new 
special rim hook tabloid T '  with sign(T) = -sign(T'). 

We must now transform P to a new column strict tableau P' of shape so that it 
can be paired with T'. Note that the relative frequencies rqr(r + l )qr+ '  of r  and r + 1 
in P should be changed to r q r + ' - ' ( r  + to match the lengths of the special rim 
hooks in T'. 

We produce P' from P in two steps. First we form a new column strict tableau 
P+ from P by changing the leftmost r  + 1 in the first row of P to r .  Note that the 
relative frequencies of r and r  + 1 in P+ now becomes rqr+'(r + l ) q r + l - l .  Thus to 
obtain P' from P',  we need only to switch the relative frequencies of r  and r + 1 in 
P'. However, there is a standard procedure due to Bender and Knuth [I] to do this 
which may be briefly described as follows: First take P+ and leave fixed all pairs of 
r and r + 1 which appear in the same column. Note that r + 1 necessarily appears 
immediately above r  in such a pair. All other appearances of r  and r + 1 in P+ are 
union of consecutive entries in rows of P+ of the form 

FIGURE 3.5. 

where in each such block, the relative frequencies of r  and r  + 1 are r"(r + 1)' for 
some s 3 0, t 3 0 with s + t > 0. To obtain P' from P + ,  we simply alter each such 
block so that the frequencies of r and r  + 1 become rt (r  + 1)" instead. 

Example 

FIGURE 3.6 
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An example of this procedure in stages is given in Figure 3.7: 

I 
Change l e  ftmo.5t 1 to  3 

I Alter the frequenczes 

spec101 rim hooks 

FIGURE 3.7. 

Now we consider the case in which r does not appear in P. 

Case 2 There is no r in P: 

Note that in this case there is no rim hook in T that starts in row r. 
For example, consider the following pair. 

FIGURE 3.8 
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Note that the only way this can happen is if the rim hook which starts in row r + 1 
starts by going down. In this case we form two special rim hooks from Hr+, by 
breaking off the top cell of Hr+,  to form H; and H i + ,  . This is simply the reverse of 
the special case singled out in Figure 3.4 where Hr is the empty rim hook. As before, 
T '  is obtained from T by switching the rim hooks Hr and Hr+,.  

We construct P' from P as before. That is, first the leftmost r + 1 in the first row 
of P to r to get P +  and then interchange the relative frequencies of r and r + 1 in 
P +  to obtain P'. Thus for our example above, the resulting pair (P', T') is pictured 
below: 

FIGURE 3.9 

This completes our definition of the involution. It is routine but tedious to check 
that our map is indeed an involution which always maps pairs (P, T )  in which there 
is some element besides 1 in the first row of P to pairs (P', T')  in which there is also 
some entry other than 1 in the first row of P'. 

The key fact to note is that when we start with a pair (P, T )  in which r + 1 is the 
largest element in the first row of P ,  then when we change the leftmost r + 1 in the 
first row of P to r, we end up with a column strict tableau P' where there is an r 
in the first row which is not covered by an r + 1 in the second row. It follows that 
when we apply the Bender-Knuth transformation to P+ which switches the 
multiplicities of r and r + 1 in P+ to produce P', there will be at least one r + 1 in 
the first row of P'. Thus we apply our involution to (P', T'), we will once again 
switch the rth and r + 1st rim hooks in T'. It then is not difficult to check that our 
involution will map (P', T') back to (P, T) .  Finally, it follows from our previous 
remarks concerning switching adjacent special rim hooks that sign(T1) = - sign(T). 
Thus all pairs (P, T)  in (3.1) cancel except for those pairs (P, T )  in which 

P has all l 's in its first row. (3.4) 

Note that (3.4) ensures that if 3, = (0 < A, < . . . < A,) then y, = ib, where q, is the 
length of the special rim hook that starts in the first row of 7: But then for each r, 
there can be at most i, r's in P, which means that qr < 2, for all special rim hooks 
in T. Since the rim hook HI must be horizontal, there can be no other rim hook 
which contains cells in the first row. Thus p, = 2, where p = (0 < y, < . . . < pk) .  But 
because sign(H,) - 1, we can simply strip off the last rows of P and T and renumber 
the labels in P by replacing each occurrence of r by r - 1 to obtain a pair (p, T )  
with sign(T) = sign(T), which would appear in the sum corresponding to 



We can then apply our involution inductively to conclude that (3.1) reduces to 

x(% = P) = ~(~ / [~"11  = ~ / b k l )  (3.6) 

which is immediate since jLl = pk. 

It seems natural to ask for a combinatorial proof of the identity K- 'K  = I  along 
the same lines as our combinatorial proof of K K - I  = I .  Again, we can reduce the 
problem of proving K - ' K  = I to showing that a certain signed sum over pairs (P, T) 
is either 0 or 1. However, the problem of finding the appropriate sign reversing 
involution in this case using our combinatorial interpretation of the entries of K- '  
is still open. 

4. A COMBINATORIAL PROOF OF THE GENERALIZED 
JACOBI-TRUDI IDENTITY 

In this section we present a combinatorial proof of the generalized Jacobi-Trudi 
identity itself based on filled special rim hook tabloids. 

Suppose /, = (0 < i, 6 2, 6 . . . 6 1,) and p = (0 6 p1 < p2 6 . . . 6 ,uk) are two 
partitions of n with p G 2. Putting h - ,  = 0 for m > 0, the generalized Jacobi-Trudi 
identity reads 

In the case that p is the null partition, (4.1) reduces to the expansion formula given 
in (2.3) that relates the Schur and the homogeneous bases. 

Our technique here is based on the construction of a certain space of filled special 
rim hook (f.s.r.h.) tabloids of shape 34p. First we proceed exactly as in the expansion 
of (2.3) and show that each nonzero term arising from the determinant on the 
right-hand side of (4.1) can be coded by a special rim hook tabloid of shape l /p .  
That is, analogous to the expansion of (2.3) with respect to the first row of the matrix, 
the quantity Evj - p1 + j - 1 is the length of the special rim hook that starts in the 
extreme North-West cell of the diagram of Rip, and ends at the jth row from the top. 
We must be careful however, because for skew shapes it need not be the case that 
these special rim hooks lie completely in the diagram of i /p .  For example, consider 
the case where 2 = (2,2, 3 ,4,5)  and p = (0,0,2,2,  3 ) .  Denoting p by (2,2, 3) for 
notational convenience, we have 

r 

L 

FIGURE 4.1. 
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Then the terms h,, h,, h,, h,, h, correspond to the following rim hooks: 

h ,  12 3 '15 127 '1 9 

FIGURE 4.2 

Note that only the rim hooks corresponding to h, and h ,  lie completely within 
the diagram of Alp. However, it is easy to see in this case that to get a nonzero term 
in the determinant our choice of elements in the first two columns must come from 
the top 2 x 2 minor and our choices for the last three columns must come from the 
bottom 3 x 3 minor. In other words, when we expand our determinant about the 
first row only those terms corresponding to special rim hooks which lie completely 
in FA/, can produce nonzero terms. This is true in general. In other words, if the jth 
special rim hook does not lie completely in F,,,, then pj  + j - 1 > Li + i - 1 for i < j. 
This means that h,, -,, + j-i = 0 for i < j. Thus the entries in the first j - 1 columns 
are all zero below row j and hence any nonzero terms in the determinant arise from 
choosing entries in the first j - 1 columns from the first j - 1 rows. It follows that 
when we expand about the first row, only those terms corresponding to special rim 
hooks completely contained in F,,, contribute anything to the determinant. As was 
the case with the expansion of (2.1), the sign of the rim hook is the sign associated 
to the corresponding term in the expansion and the minor is the determinant 
corresponding to S,,p where alp is the skew shape which results from F,,, by stripping 
off cells corresponding to the special rim hook. 

Example 

- det  S ( 2 , 2 , 3 , 4 , 5 ) / 1 ? , 2 , 3 )  - 

C 

h ,  1z3 lz5 hi l l g  

h l  h ,  h ,  I t g  l l g  

0 0 1 5  h3  h 5  

0 0 1 / 1 2  l l q  

0 0 0 1 112 

- 
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We can continue to expand each of the minors about the first row recursively and 
show just as in Section 1 that each nonzero term in the determinant, 
s i g n ( ) h  + , . . . hA0 -,,+ ,,-, corresponds to a special rim hook tabloid T of 
shape i./p and that sign(?) = sign(a). Moreover in T if we let Hi be the special rim 
hook that starts in the ith row from the top of the skew diagram, then lHil = & - I L , + u r - i .  

We give two examples of this correspondence below: 

FIGURE 4.4 

Finally, when we take a term like h,h,h,h,h, which corresponds to the special rim 
hook tabloid TI above and expand it in terms of monomials, then each monomial 
in the expansion corresponds to  a product of weights of column strict tableaux 

FIGURE 4.5. 

whose shapes are single rows corresponding to the lengths of the special rim hooks 
of TI. We can then insert the entries of each column strict tableau into the cells 
occupied by the corresponding rim hook starting at the North-West corner. In this 
way, we associate to each signed monomial arising from the determinant in (4.1), a 
filled special rim hook tabloid. For example, in our specific case, we would produce 
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the following f.s.r.h.-tabloid 

T ' ,  = 

FIGURE 4.6. 

The weight of such a f.s.r.h.-tabloid T i  is just its weight when viewed as a tabloid, 
and the sign associated to T i  is its sign when viewed as a rim hook tabloid. This 
given, we let X,,, denote the space of all f.s.r.h.-tabloids T of shape i./p. We have 
shown that 

To prove the generalized Jacobi-Trudi identity, it suffices to prove that 

To prove (4.4), we shall construct a weight preserving and sign reversing involution 
8 on X = X,, , whose fixed points will consist precisely of all column strict tableaux 
of shape Alp. 

Note that since we filled each rim hook with a weakly increasing sequence starting 
at the extreme North-West cell, it follows that the only way a f.s.r.h.-tabloid T in X 
could be a column strict tableau is if all the rim hooks are horizontal and the entries 
in each column are strictly increasing from bottom to top. 

For the construction of H ,  suppose we are given a T E X  which is not column strict. 
Consider the leftmost and then the topmost violation of column strictness in 7: We 
claim that this violation is necessarily of the form 

FIGURE 4.7. 

For if the leftmost and then the topmost violation involves two adjacent entries 
xi and yi in a row, then xi > y, and by our coding these two entries necessarily belong 



to two distinct special rim hooks H,,, and H,, respectively. Note that in this case 
H,,, must be horizontal, i.e. all of its cells lie in a single row. 

FIGURE 4.8. 

But the choice of our violation means that x i  < yi - , . Since yi - , 6 y, - , 6 y,, this 
forces xi 6 y,, a contradiction. 

Consider now the leftmost and the topmost violation of column strictness as in 
Figure 4.7 and assume that the top label yi belongs to the special rim hook H,. 

From T, we construct T' as follows. First of all, the special rim hooks H, and H,, , 
are switched to obtain Hi  and H:,,. Note that the only extension of the switch 
described in Section 3 that is required for skew shapes arises when H,,, starts in 
row i + 1. The switch here takes the form of gluing together H, and H,,, to obtain 
Hi.  In pictures 

Hr 0-0-0 HIr 0-0-0 

0-0-0 0-0-9 

FIGURE 4.9. 

Thus here, Hi  just results from H, by adding the cells of H,,, to those of Hr. 
Technically, we think of H;,, as the empty rim hook. Note that for p = (a, this 
situation can arise only when H, consists of a single cell. 

After the switch, both H: and H:,, are relabeled by redistributing the labels in H, 
and H,, ,. For the relabeling phase, there are two cases to consider: 

(1) xi lies on the Eastern outer rim of the skew shape H, u Hr+ ,, 
( 2 )  x i  lies on the Southern outer rim of the skew shape H, u H,, ,. 

In Case (I), the involution does not change the old labels in H, u H,,, . Note that 
the two vertical cells in which the violation in question occurs are still on the Eastern 
outer rim of the skew shape H, u H,, ,. 
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Example 

FIGURE 4.10. 

In Case (2), assume that the labels in Hr from yi on are yi < yi+ < . . . < yr, and 
the labels in Hr+, from xi  on are xi  d x i + ,  < . . . d x,. After switching the pair of 
special rim hooks H,, H,,, to the pair HL, HL+ ,, the cells starting with yi in the new 
special rim hook H: are given the labels 

and the cells starting with x i  in HL+, the labels 

Example 

FIGURE 4.11. 

Note that the location of the leftmost and then the toDmost violation of row 
strictness is preserved and the mapping 0 defined by this procedure is an involution. 

If Hr+, happens to be void, then we are in a special subcase of Case (1) and the 
switch takes the special form 

FIGURE 4.12. 

without altering the labels. 



As an example for this latter possibility, 0 matches T and T' given below: 

FIGURE 4.13. 

Note that switching the rth and the r + 1st special rim hooks in a f.s.r.h.-tabloid 
T changes the sign of T just as in Section 2. Thus sign(Tr) = -sign(T). Clearly, 
W(T1) = W(T). Therefore the fixed points of 19 correspond to f.s.r.h.-tabloids in which 
the entries are strictly increasing along the columns: i.e. column strict tableaux of 
shape i lp ,  rn 

5.  APPLICATIONS AND REMARKS 

The involution 0 constructed above preserves the sum of the entries in a given 
diagonal of a f.s.r.h.-tabloid T. Similar to the technique used in [ 5 ]  to derive a 
multivariate generating function for reverse plane partitions from Giambelli's 
expansion formula, this may facilitate the closed form expansion of S,,,(q, q 2 ,  . . . j  
via the determinant on the right-hand side of (4.1), at least for special classes of skew 
Schur functions. 

In Section 2,  we gave a combinatorial interpretation in terms of special rim hook 
tabloids of shape p and type i, for the coefficient of the homogeneous symmetric 
function 12, in the expansion of the Schur function S,. Note that our argument in 
Section 4 shows that a similar combinatorial interpretation exists for the coefficient 
of h, in the expansion of S,,,. In other words, if 2, p,  and v are partitions such that 
I i l  = Ip/vI, define 

K,& = sign(T), 
T 

(5.1) 

where the sum runs over all special rim hook tabloids of type 2 and shape p/v. Then 
our analysis in Section 4 shows that 

There is also a determinantal expression for the Schur functions in terms of the 
elementary symmetric functions e , .  Here, if 3. = (0 < 3", d . . . < i,), then 

ei. = e,,e,; . .e,, (5.3) 

where e, = 1 and for each r > 0, 
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Then if p = (0 6 p, 5 p, < . . . < pk) is such that p G 2 and we let v' denote the 
conjugate of the partition v, we have 

Sxlg' =det / le~J-g,+j- i l l~ (5.4) 

Obviously we can apply the same argument to the determinant on the right-hand 
side of (5.4) that we did to the determinant in (4.1) to conclude that 

We end this section with an interesting application of (5.5). Let w be a primitive 
pth root of unity. We wish to evaluate S,,,(1, o, . . . , wP-'). Note that 

Taking the coefficient of xr on both sides of (5.6), we see that 

1 if r=O,  1 e,(l, o, . . . , UP- ' )=  ( - l )P+l  if r = p ,  (5.7) 

if r$(O,p}. 

Thus for any partition i, we see that 

if i is not of the form (pk), and 

qP& m> . . . 3 
1) = ( -  l)(p+ ilk. (5.9) 

By (5.5), (5.8), and (5.9), we obtain 

We can state (5.10) in a somewhat more perspicuous manner. First we shall say 
that T is a t-special rim hook tabloid of shape p/v and type 1 if T results by reflecting 
a special rim hook tabloid T' about the line y = x in the plane. We shall call T the 
transpose of T'. For example, if p = (1, 3 ,4 ,5 )  and p = (1, 3), then the special rim 
hook tabloid T' of shape p1/v' in Figure 5.1 

FIGURE 5.1 



gives rise to the t-special rim hook tabloid of shape p/v given in Figure 5.2. 

FIGURE 5.2 

Note that t-special rim hook tabloids are just like special rim hook tabloids except 
that instead of filling the diagram p/v with rim hooks by recursion always starting 
from the North-West extreme cell, we fill the diagram p/v with rim hooks by recursion 
always starting from the South-East extreme cell. In particular, if v = iZ(, t-special 
rim hook tabloids of shape p = p/@ have all their rim hooks starting in the first row, 
as opposed to special rim hook tabloids of shape p which have all their rim hooks 
starting in the first column. 

Now consider the term ( - l)kK (pk,,l(i,,l - which appears on the right-hand side 
of (5.10). When we reflect a rim hook H about the line y = x to produce a rim hook 
H', it is easy to see that 

ht(H) = number of rows of H 

It is simple to grove by induction on p that if H is a rim hook of size p,  then 
ht(H) + wd(H) = p + 1. Thus if H is a rim hook of size p and H' is its reflection as 
described above, then 

It follows from (5.11) that if T' is a special rim hook tabloid of shape p'lv' and type 
(pk), and T is the transpose of T', then 

As in Corollary 5, it is not difficult to see that there is at most one special rim 
hook tabloid of type (pk) for any shape. Thus there is at most one t-special rim hook 
tabloid of type (pk). Therefore the following Theorem is a consequence of (5.10) and 
(5.12) 
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i sign(T) if Ipjvl = pk for some k and T is a t-special 

SPiv(l, 0 ,  . . . , u p - I )  = rim hook tabloid of shape pjv and type (pk), 

(0 otherwise. 

We should also note that the special case of Theorem 3 when v = was proved 
by Chen [2] and was used by Chen, Garsia, and Remmel in [3] as a part of their 
algorithm to compute plethysms. Also, Macdonald in the forthcoming second edition 
of his book [ l l ]  provides an equivalent expression for S,,,(l, o, . . . , up- l )  in terms 
of p-quotients and p-cores of y and v. The import of Theorem 3 is that it provides 
an extremely simple algorithm to compute S,,,(l, w, . . . , wP-l).  That is, we simply 
try to decompose the shape p/v into rim hooks of size p recursively by taking rim 
hooks which always start in the extreme South-East corner. If we are successful in 
decomposing the shape p/v in this manner, then S,,,(l, o, . . . , up- ' )  equals the sign 
of the resulting t-special rim hook tabloid. If we are not successful, then 
S,,,(l, w, .  . . , up- ' )  = O .  For example, if p =  5 and p =  (1, 3 ,4 ,6 ,6) ,  v = a, then 
SJl, w, w2, w3, u4 )  = 0 because as one can see in Figure 5.3, there is no t-special 
rim hook tabloid of shape p and type (j4). 

FIGURE 5.3. 

On  the other hand, if p = (4 ,5 ,6 ,7 )  and v = (2,2,2),  then S,(l, w, w2, w3, w4) = 1 
since as one can see in Figure 5.4, there is a t-special rim hook tabloid T of shape 
p/v and type (53) with sign(T) = 1. 

FIGURE 5.4. 
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