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We consider an extension of the Parikh mapping called the Parikh g-
matriz mapping, which takes its values in matrices with polynomial en-
tries. The morphism constructed represents a word w over a k-letter al-
phabet as a k-dimensional upper-triangular matrix with entries that are
nonnegative integral polynomials in variable g. We show that by appro-
priately embedding the k-letter alphabet into the (k+ 1)-letter alphabet
and putting ¢ = 1, we obtain the extension of the Parikh mapping to
(k + 1)-dimensional (numerical) matrices introduced by Mateescu, Salo-
maa, Salomaa, and Yu. The Parikh g-matrix mapping however, produces
matrices that carry more information about w than the numerical Parikh
matrix. The entries of the g-matrix image of w under this morphism is

constructed by g-counting the number of occurrences of certain words
as scattered subwords of w. ’

1. Introduction

Parikh's celebrated theorem says that every context-free language is “letter-
equivalent” to a regular language.® More precisely, the commutative image
of any context-free language is always a semilinear set, and is therefore
also the commutative image of some regular set. Consider the alphabet
Ly = {a<ar<o-- < ax} and for w € £*, define by |w|,, the number of
Occurrences of a; in w. The Parikh mapping is a morphism

¥: 2" - IN*

Where IN denotes nonnegative integers and ¥(w) = (|wla, , |wlay, -
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The Parikh mapping is a very important concept in the theory of formal
languages. Various languages accepted (generated) by automata (gram-
mars) more powerful than pushdown automata (context-free grammars)
have been shown to have effectively computable semilinear sets. For exam-
ple, it is known that every language accepted by a pushdown automaton
augmented with reversal-bounded counters (i.e., each counter can be incre-
mented /decremented by one and tested for zero, but the number of alter-
nations between nondecreasing and nonincreasing modes is bounded by a
fixed constant) has a semilinear Parikh map.® The fact that the emptiness
problem for semilinear sets is decidable implies that the emptiness problem
for these automata (grammars) is decidable. This decidability of emptiness
has been used to show the decidability of many decision questions in formal
languages and formal verification.*®
The Parikh matriz mapping introduced in Ref. 7 is a morphism

eugk : MH* = kg_w.f—

where My is a collection of (k+ 1)-dimensional upper-triangular matrices
with nonnegative integral entries and unit diagonal. The classical Parikh
vector ¥(w) appears in the image matrix as the second diagonal.

The Parikh q-matriz mapping introduced in this paper is a morphism

Tk % - Mi(q)

where Mj(q) is a collection of k-dimensional upper-triangular matrices
with nonnegative integral polynomials in ¢ as entries. The diagonal entries
of W¥(w) are

mQ_E_nH ) Q_E_nn A Q_E_;aw

which readily encodes the Parikh vector. Moreover if we embed X into
Y k41 in the obvious way, and put ¢ = 1, then we obtain the matrices of the
Parikh matrix map of Ref. 7. Thus, viewing w € ¥ as a word in X4 with
|wlay,, = 0, the Parikh g-matrix W5 (w) evaluated at ¢ = 1 is precisely
the (k + 1)-dimensional numerical Parikh matrix Wy, (w).

It is a basic property of the Parikh matrix mapping that two words
with the same Parikh matrix have the same Parikh vector, but two words
with the same Parikh vector in many cases have different Parikh matrices.
Thus, the Parikh matrix gives more information about a word than the
Parikh vector. The injectivity of the Parikh matrix mapping is investigated
in Ref. 1. From our construction it is easy to see that two words with
the same Parikh ¢g-matrix have the same Parikh matrix (and therefore the
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same Parikh vector), but there are cases in which two words with the same
Parikh matrix have different g-matrices. Thus the Parikh g-matrix gives
more information about a word than the Parikh matrix.

The basic idea in the construction of the entries of the Parikh g-matrix
::m.._oqm of w is g-counting the number of occurrences of certain words as
scattered subwords of w.

This paper is an extension of the extended abstract in Ref. 3 and has
five sections in addition to this section. Section 2 gives some basic notation
and definitions. Section 3 recalls the notion of a Parikh matrix mapping
introduced in Ref. 7 and the fundamental theorem concerning these map-
pings. Section 4 presents our new Parikh mapping, called g-matrix mapping,
that generalizes the Parikh matrix mapping: whereas the latter produces
matrices with nonnegative integer entries, the former produces matrices
with nonnegative integral polynomials (in variable ¢) entries. This extended
mapping produces matrices that carry more information about the mapped
words than the numerical matrices produced by the Parikh matrix map-
ping. Section 5 presents the main results, including Theorem 2, which gives
the main properties of a g-matrix mapping. Section 6 looks at some matrix
operations such as injectivity and inverse concerning g-matrix mapping.

2. Definitions

We start with some basic notation and definitions. Most of these are as
they appear in Refs. 7 and 1. The set of all nonnegative integers is denoted
by IN. We denote by IN[g] the collection of polynomials in the variable g
with coefficients from IN. Z denotes integers, and Z[q| denotes the ring
of polynomials in the variable ¢ with integral coefficients. For an alphabet
¥, we denote the set of all words over ¥ by £* and the empty word by
A We use “ordered” alphabets. An ordered alphabet is an alphabet ¥ =
{a,az,...,ax} with a relation of order (“<”) on it. If for instance a; <
az < -+ < ay, then we use the notation

MH*QHAQNA...Awa.

If w € £* then |w| denotes the length of w. For a; € ¥ and w € X* the
number of occurrences of the letter a; in w is denoted by |w|e,. Accordingly
lw| = |wla, + [wlay + -+ + |wlay-

Let & = {a; < ag < -+ < ax} be an ordered alphabet. The Parikh
vector of w € £* is the vector of occurrences (|w|,,, |w|ay, - - -, [®w|a, ). The
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Parikh mapping morphism:

¥:n* — INF o
.E_._.K___,”ML |v.>\_k+.__

is defined by setting :
defined as follows:

If G?Axan_hv = m.:...p..,...._.v_mw..w.mﬁ__i.wv_ then for each 1 < i = k+ .__ mii = Hq
* my 41 = 1 and all other elements of the matrix ¥y, (a;) are zero.

U(w) = (|wlay; |[wlags - - -1 [W]ai) -

Let v, w be words over ¥. As defined in Ref. 7, the word v is called
a scattered subword of w if there exists a word u such that w € u Ly,
where (Ul denotes the shuffle operation. If v, w € ¥*, then the number
of occurrences of v in w as a scattered subword is denoted by |w|scatt—v-
Partially overlapping occurrences of a word as a scattered subword of a
word are counted as distinct occurrences. For example, |achb|scatt—ab = 2,

Example 1: Let ¥ be the ordered alphabet {a < b < c}. Then the Parikh
matrix mapping Wy, represents each word over X* as a 4 x 4 upper tri-
angular matrix with unit diagonal with nonnegative integral entries. We
compute some special cases.

_Dnvg_mn_ﬁ.nlae = 1. 9
W g, maw u = Eb\_mﬁavﬁ_b\_uﬁs_ﬁkmﬁs
Notation: We shall also find it useful to denote |w|scatt—v By Sw,u. Using
this notation, we write Secbbab = 2, Sacba,ab = 1, and Sy q, = |wla, for any
et Wty (abe) = W vty (@) .ty (0¥ pay (€) .ty (0)
Notation: Consider the ordered alphabet {a; < az < -+ < aix} where
k > 1. As in Ref. 7, we denote by a; ; the word a;a;41---a; where 1 <i <
gk F1100] [1800 1000
0100 0110 {5 1
0010 0010 0010

0001] L0001 0001

L} ab?) =
For motivation and further issues about the Parikh mapping as well as(ab)

as language-theoretic notions not considered here, we refer the reader to
Ref. 9.

1 1 20]

10120

3. Parikh Matrix Mapping y =loo10
We first describe the extension of the Parikh mapping to matrices as orig- L0001 ]

inally defined in Ref. 7. The extension involves special types of triangular
matrices. These are square matrices m = (m; ;)1<i,j<k such that m; ; € I,

mo:i:mn._.%MFEQHP?_,NF:M%As.m.ﬁ_mbmaoﬂmcébgiur "11007 71000 1000 1100
for all 1 < i < k. The set of all these matrices of dimension £ is denoted - & 0100 0110 0100 0100
by Mg. Thus My is the collection k x k upper-triangular matrices with & M;(abea) = o010l loo10! loo11] |oo10
entries from IN and unit diagonal. The set My, is a monoid with respect to l0001] looo1] Llooo1] looo1
multiplication of matrices and has a unit which is the matrix . d

The main notion introduced in Ref. 7 is as follows: : F1211]
. () :
Definition 1: Let ¥ = {a; < ap < --- < ax} be an ordered alpha- i = NMWW
bet, where k > 1, The Parikh matrix mapping, denoted by Wa4,, is thel 10001
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and consequently

1120711211 1344
0120 o111 0133
Uy (ababea) = | 005 ol loo11| = |oor1
0001] o001 0001

Remark: The Parikh matrix mapping is not an injective mapping. For
instance over the ordered alphabet {a < b < ¢} one has

i L 0
D11a
0011
0001

W s (ach) = W, (cab) =

Conditions for two words a and [ to possess the same Parikh matrix was
studied for the binary alphabet in Ref. 1. We will discuss some of these
conditions later in the paper.

The main property of the Parikh matrix mapping proved in Ref. 7 is
the following theorem:

Theorem 1: (Ref. 7, Theorem 3.1) Let ¥ = {a; < az < --- < ax} be
an ordered alphabet, where k > 1 and assume that w € X*. The matrix
W g, (w) = (mi j)1<ij<(k+1), has the following properties

(1) mij=0,forall1 <j<i<(k+1),
(2) miz;=1,forall 1 <i<(k+1),
Awu My 41 = ,m.E,n.._.u_ foralll <i<j<k.

As a corollary

Corollary 1: (Ref. 7, Corollary 3.1) Let ¥ = {a; < a3 < -+ <
ar} The matric Wp (w) has the second diagonal (i.e., the wvector
(my2,m23,...,Mkk+1)) the Parikh vector of w, i.e.,

(m1,2,Mm2,3, -y Mik+1) = T(w) = (|wlay, [Wag - - - |W]ay) -

4. g-Counting Scattered Subwords

Next we introduce a collection of polynomials Sy o, ;(g) indexed by pairs
of words a;;, w € ¥, with j < k — 1. These polynomials will “g-count”
the quantities Sy, o, ; defined above for general v and w as will be explained
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shortly in the case a; ; is a scattered subword of w. To construct Sy 4, ;(g)
we consider each factorization

W = UidiUip1G441 * - UjaU541 cv
with us € X7 for i < s < j + 1, and construct the corresponding monomial

Q?.._f_ Huigrlag g +otlugla; Huwgrilag ﬁmv

in IN[g], and add up these monomials. Note that a;4+, € ¥ since j < k, so
that the last term in the exponent in (2) is defined. Thus

Sems = Y L gektealatteltunba ()

W=UiQ WA U 4

Example 2: Suppose X ={a<b<c<d}andi=2,j=2 Thena;; =b
and for w € £*,

Swala) = 3 el

w=xby

For example for w = baccbedab, the relevant factorizations of w are
(N)b(accbedab),  (bace)b(cdab), (baccheda)b(N),
and therefore
Swp(@) =" + ¢ + g0 = 20> + ¢

Example 3: Suppose £ = {a < b < ¢ < d} and i = 2, j = 3. Then
ai; = bc and for w € ¥*,

Swie(g) = M gleloHvletizla

w=xbycz
For example for w = baccbedab, the relevant factorizations of w are
(A)b(a)e(cbedab),  (A)b(ac)e(bedab), (A)b(aceb)e(dab), (bace)b(N)e(dab),
and therefore
Swpe(q) = OO+ 4 gOFIHL 4 (04241 4 1H0+1 _ 0 L 902 4 3

Example 4: Suppose ¥ = {a < b < ¢ < d} and i = 1, j = 3. Then
a;; = abc and for w € ¥*,

Sempcl) = 3 ettty
=tazbycz
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For example for w = baccbedab, the only relevant factorization of w is
(B)a(ce)b(Nc(dab)

and therefore

0+0+1 _

m&.nwaﬂau =q q.

Since the summation in the definition (3) is over all occurrences of a;
in w as a scattered subword, the following proposition is immediate:

Proposition 1: Let ¥ = {a) <ag <-- < ax} and1 <i < j < k. Then
»m._.c_n.._u.ﬁv = ,m.E.n._..,_. AH ?;mnmilnrmv.

This is the sense in which the polynomials Sy a, . (q) “g-count” the num-
ber of occurrences of a;a;+1 - - - a; as a scattered subword of w. These poly-
nomials are the “g-analogues” of the numbers Sy, 4, ;-

We need the following properties of the polynomials Sy ,q, ;(¢):

Lemma 1: Let ¥ = {a1 < az < --- < ax} and suppose w = w'a; for some
a; €%, j <k. Then

ﬁv um«E‘n_.aLva == Q_m_ac\_?.glp ?._Q .\,.cﬂ. 1<:< .H‘._
(2) rm.E_nE. (q) = .we,._a..a{_gu <7 mE:aE,@v for1<i<j.

Proof: For the proof of (1), we note that there is a one-to-one correspon-
dence between factorizations w' = wuja;uj, ait1 - uj_ja;-1u; of w' and
factorizations w = u;a;Ui4+1@i41 - Uj—1aj-1%; of w in which u}, = wuy for
k=12...,7=1, except uj = .ﬁa.u.. Thus the exponents of the monomi-
als in (2) that are summed up to construct Sy a, ;_,(g) are one more than
those of the monomials in the computation of Sy a, ;_, (g)- This means that
.m.s.nil_ Tb e Q.m.E:n...T_ (q)-

For the proof of (2), we note that the factorizations of w of the form (1)
with uj4; = A contribute the monomials in Sy a4, ;_,(g) to the sum in (3),

while the remaining factorizations of w contribute Sy 4, ;(g)- O

5. Parikh g-Matrix Mapping

We denote by My(q) the collection of k-dimensional upper-triangular ma-
trices with entries in IN[g]. Let Iy denote the identity matrix of dimension
k. The matrix ¥,(a;) corresponding to a a; € ¥ is defined as the matrix
obtained from I first by changing the Ith diagonal element from 1 to gq.
Then if I < k, we also change the entry immediately to the right of the ¢
from 0 to a (1). Thus if ,(a;) = (my;)1<ij<k, then

A g-Analogue of the Parikh Matriz Mapping 105

(1) my =gq,

ﬁwv Sm»mHHmOnwmmm‘w,m%h.

va mit+1 = 1ibih= &,

(4) all other entries of the matrix ¥,(a;) are zero.

When the alphabet is ¥ = {a < b < ¢}, then

q10 100 100
V@)= |010], W,)=]0g1|, Tgc)=|010
001 001 00g

We extend the mapping from ¥ to X* by setting

(1) Wg(A) = I,
(2) Vy(wrwz - wn) = Yo(wy)Pq(wz) --- Yg(wn), ws €L, 1 <i<n

We will refer to ¥, = GM as the Parikh ¢g-matrix mapping. Note that the
parameter k = |X| is implicit in our notation.

Remark: Just as the Parikh mapping is a morphism from the monoid
(X*,-,A) to the monoid (IN*, +,(0,0,...,0)), the set of matrices M(q) is
a monoid with respect to matrix multiplication and Iy .as its unit.

Thus the Parikh g-matrix mapping is a morphism
Gﬂ 2D J Kwﬁﬂv.
As examples, we have

W,(ab?) = Wy(a)Wa(b)Uq(b) and  Wg(abea) = Ug(a) Wy (b)¥q(c)¥q(a) -

Thus
[g107 [100] [1007 aq*1+q
W (ab®) = |010| [0gl| |0g1|=]0¢*1+q
001 [o01] [0o01] [o0 1
[g107 [100] 1007 [¢g10
U,(abca) = [010] |0g1| |O10f |010
(001 001 [00q] [001

[¢® 2q ]
—
0 0gq

o
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Consequently, for w = ab?abca, we compute that

¢ ¢ 1+q] [¢® 2¢ ¢
Ug(w)= [0 ¢*> 1+¢g|[ |0 ¢q ¢
|0 0 1 0 0 g
[ 2 +¢® q+2¢*+¢°
=10 ¢ g+ +q¢
| 0 0 q

Remark: For the Parikh g-matrix mapping it is not true that if £ is a
context-free language, then its image is some suitable extension of the no-
tion of semilinearity to matrices over IN[g]. This is a direct consequence of

Theorem 3 and the negative result concerning the Parikh matrix mapping
(Ref. 7, Remark 3.2).

Proposition 2: Let £ = {a; < a2 < --+ < ag} and w € T*. Then the
vector of diagonal entries of the matriz ¥q(w) is

(qlelos, glvle, .. givlos) € N[gl*.

Proof: The matrices ¥,(a;) are all upper-triangular. It is easy to see that
the diagonal entries of a product of two upper-triangular matrices depend
only on the diagonal elements of each of the matrices. Since diagonal ma-
trices commute, and each occurrence of the letter a; in w has the effect of
multiplying the [th diagonal entry of the k-dimensional identity matrix I}
by g, the result follows immediately. O

Remark: We note that the Parikh vector of w is given by the formal
derivative of

(g*les, gllea, ..., qllex) € IN[g]*
with respect to ¢ evaluated at ¢ = 1.
Theorem 2: Let ¥ = {a; < az < -+ < ax} be an ordered alphabet, where

k > 1 and assume that w € I*. The matrix ¥q(w) = (m;(¢))1<i j<k, has
the following properties

(1) my; =0,foralll1 <j<i<k,
(2) mii= gl forall 1 < i<k,
(3) Mijt1 = Swa,;(g) forall 1 <i<j<k.
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Proof: The proof of the parts (1) and (2) are immediate. We now prove
property (3). Assume that |w| = n. The proof is by induction on n. If n < 1,
the assertion holds. Assume now that part (3) holds for all words of length
n and let w be of length n+ 1. Write w = w’a; where |w'| = n and a; € E.
Then

Yo(w) = ¥y(w')¥q(ay)

Assume that

IQ_E;DH SM_M Pl A Sm___n =
0 ﬂT.tJﬂu S A am___n

U, (w') = =M
: : Sl b Wy
0 0 ezl b s ..u__q.:.._ax

By the inductive hypothesis the matrix ¥,(w') has property (3). The proof
has two cases depending on whether j = k, or j < k. For j < k, we have

e R

Ve(a;)=10---q 1 .-+ 0

)2 o e 1

where the matrix differs from Iy only in two entries: The entry in position
(4,7) is q instead of 1, and the entry in position (j,j + 1) is 1 instead of 0.
Let M = U, (w). Then

AW
i
M= : : S : e
. . e A 2 il e
: : SR Y ) B et
: i B8 A

If M = (myp,q)1<p,q<k, then
me; = qmj, for 1<i<j,
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and for all other indices, m,, = mj, .. The two equalities for the altered
entries of the matrix are equivalent to

%S\n.?nm_u|wﬁ_m.u o Q.WSSE..T. ﬁm_u for1<i<j,

m_\c..ﬂ.“.a;.g Ao_w == ms.,p.xa.l_mav iy .W.E_..nm_u. ﬁnv for1<i<y,

which hold by Lemma 1. In the case j = k the only change that appears
in going from M’ to M is that the last column M is obtained from M’ by
multiplying the elements of the last column of M’ by g. This corresponds to
the fact that the number of occurrences of ay in ugy; in any factorization
of the form (1) is increased by 1: i.e.,

.m_e‘.__afarwlh Anv = QMEE.E}L Eu
and the proof follows by induction. a
Remark: The structure of how the polynomials in the matrix are indexed

can be mnemonically recorded as shown below in the case of the four-letter
alphabet ¥ = {a1 < a1 < ag < aq}:

a5 g¥ler gy ajas aiagas
as 0 g¥ea g a0z
a3 0 0 Q_E_pw ag
Q_A c D D @._@c“a&

As an example, the entry in second row and the fourth column is a short-
hand for the polynomial Sy 4,a,(g), the g-count of the number of occur-
rences of azaz as a scattered subword of w as developed in Sec. 4.

Proposition 3: Let ¥ = {a; < ag < - < ax} and w € L*. Suppose the
vector of super diagonal entries of the matriz W, (w) is
(m1,2(q), m2,3(9), - - -, mk—1,k(q)) € Bilag™ .

Then at q = 1, this vector evaluates to

:.E__n.- ’ __E_nuu. g _S_Dkl~u 2

Proof: This proposition is a special case of a stronger result that charac-
terizes the whole matrix W (w) at ¢ = 1 that we give as Theorem 3. O

.u.urmou.ma 3: Suppose ¥ = {a; < ag < :-+ < ax} and w € L*. Consider
w as a word over I' = {a; < az < -+- < ax < ar41} and let ¥ (w) be the
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resulting Parikh g-matrix in IN[g]**!. Then ¥,(w) evaluated at ¢ = 1 is the
Parikh matrix W4, (w).

Proof: Combine Theorem 2, Theorem 1, and Proposition 1. O

6. Injectivity, Inverse, and Further Remarks

Just as the Parikh matrix mapping, the Parikh g-matrix mapping is not an
injective mapping either. For instance over the ordered alphabet {a < b <
¢} one has

qql
¥, (ach) = ¥y(cab) = |0 g 1
00gq
However, there are instances in which two words can have the same Parikh
matrix, but distinct Parikh g-matrices.

The injectivity of the Parikh matrix mapping was studied in Ref. 1. In
particular it was proved that over a binary alphabet £, a pair of palindromic
amiable words a, ( have the same Parikh matrix image. The definition of
palindromic amiable pair is as follows:

(1) Both o and 3 are palindromes,
(2) @ and B have the same Parikh vector, i.e., U(a) = ¥(3).

For example the words a = aba®ba and § = ba*b over £ = {a < b} are
palindromic amiables. Therefore as proved in Ref. 1, they have the same
3 x 3 Parikh matrix image. We calculate directly that indeed

144

G_»SuADQ =101} = GL_S.NOQV (4)

001
The corresponding matrices given by the Parikh g-matrix mapping ¥, are
calculated over the alphabet {a < b < ¢} in accordance with Theorem 3.
These are also 3 x 3 upper-triangular matrices, but with entries from IN[g].
They are given by
[¢* 2¢*+2¢° 1+2¢+¢°
Ve(a)=|0 q° 144q (5)
0 0 1

[¢* g+ ++¢* 1+q++°
0 q° 1+gq (6)
," 0 0 1 .

&
Il
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Clearly, these two distinct matrices reduce to W, (@) = W py,(83) given in
(4) as guaranteed by Theorem 3. Thus the matrices obtained by the Parikh
g-matrix mapping contains finer information that is able to distinguish
words that are equal under the ordinary Parikh matrix map. An alternate
generalization of the Parikh matrix mapping with additional injectivity
properties using a different g-analogue of scattered-subwords appears in
Ref. 2.

The notion of the alternate (signed) Parikh matrix developed in Ref. 7
has the nice property that the inverse of the matrix W, (w) is the alter-
nate Parikh matrix of the mirror image mi(w) of w. This property also
carries over to the case of the Parikh g-matrix mapping with some mod-
ifications. Let ¥ = {a; < a2 < :-+ < ax}. We define a morphism (called

matrix identity

0

= R

U, (w)¥,(mi(w)) = | . ; : (7)

e 0 gl
holds.

Proof: From the definition of the matrices ¥,(a;) and ¥,(a;), we have the
the matrix product

Vq(a1)¥y(ar) = gl
for any letter a; € X. If |w| > 1, write w = w'a; with a; € X. Then
Uy (w)¥q(mi(w)) = Wg(w')¥q(a;)¥y(a;)¥q(mi(w))
= Wy(w')qli ¥y (mi(w"))
= LV ()T (mi(w'))

and the theorem follows by induction on |w

the alternate Parikh q-matriz mapping) ¥, = @” from E* to a collection
of k-dimensional upper-triangular matrices over Z[g]. ¥, is defined on £
as follows: If Wy(a;) = (mi;)1<i,j<k, then

mig =1,

mia=glorl i<k 3=,

mig = —1ifl <k,

all other entries of the matrix ¥,(a;) are zero.

(1)
(2) O
(3)

(4) It can also be shown that the identity (7) reduces to the matrix in-
verse identity of the Parikh matrix mapping of Ref. 7 when we extend the

Example 5: When the alphabet is £ = {a < b < ¢}, then alphabet as in Theorem 3 and put g = 1.
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Note that ¥,(a)¥(a) = Wq(b)¥e(b) = ¥q(c)¥q(c) = gl3. As an example,
for w = ab’abca, we compute that :

Q» |M©m 2 __m.» Mmm 3+ MQ& + Qu
T, (mi(w)) = | 0 q —¢*—¢°— ¢
0 0 q°

Then the following result holds.

Theorem 4: Suppose ¥ = {a; <az <--- < ax}andw € £*. If ¥, and ¥,
are the Parikh g-matrix, and the alternate Parikh g-matrix mappings from
¥* to upper-triangular integral matrices over Z[g], then the k-dimensional ¢
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