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Abstract

A typical reconfiguration problem for an autonomous robotic sys-
tem on the one dimensional grid is considered. The global goal of the sys-
tem is to self-organize into units of physically adjacent pairs of robots
separated by empty seats. By making use of randomization in the decision
making process of each robot, the evolution of the system is modeled as a
Markov chain, where each state represents a nonuniform random walk.
The chain is absorbing, showing that the desired configuration will be
reached with probability one.

1. Introduction

As robotics systems grow more complex and the demand for relia-
bility increases, distributed systems in which many robots cooperate to
accomplish a given task become a natural domain of study [1]. Given
that robotics systems employing centralized control are susceptible to per-
formance problems when the load on the central control increases, and to
complete failure if the central control breaks down, the desirability of a
fully distributed robotics system becomes apparent both in terms of relia-
bility, and simplicity of design for a system of identical autonomous
robots.

We consider a typical reconfiguration problem for an autonomous
robotic system on the one dimensional grid. Each robot is of a relatively
simple complexity with identical internal algorithm and limited sensing
power constrained to its neighboring cells. The robotic system in question
is further characterized in having no centralized control, no centralized
data base, no shared memory, and no synchronous clock. These are the
properties that essentially characterize Cellular Robotics Systems [3, 5].

The one dimensional pairing problem specified here utilizes an
asynchronous, distributed algorithm which uses randomization. Even
though the use of randomization results in a relatively simple protocol for
the problem, the verification that the system will indeed accomplish its
stated task requires careful analysis.

The One Dimensional Random Pairing Problem (RPP) has the fol-
lowing basic characteristics:

. The system is made up of a large, even number of identical robots.

e  The robot motion takes place in a one dimensional unbounded grid
of infinite seats.

e The robots know their left and right directions.

e  The motion of a robot is limited to one step to the right or one step
to the left provided such moves are possible.

e  Each robot can sense the neighborhood around itself and cannot see
through other robots. The neighborhood of a unit is defined as the
first two seats to its left and the first two seats to its right.
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e  The intemal algorithm of each robot contains a randomized com-
ponent in the sense that decisions can be made depending on the
outcome of a coin toss.

The global goal of the system is for the robots to self-organize into
units of pairs. These pairs are required to be spatially separated by at least
one empty seat in the final (or stable) configuration.

In the algorithm that we propose here, each robot starts out by
selecting a random direction to move in. If the robot has empty seats sur-
rounding it and there are no other neighboring robots moving towards it,
then it will attempt to move in the direction chosen since its ultimate goal
is to find other robots. If the robot is neighboring one or more robots,
then it will perform one of a number of different possible state changes
depending on the status of its neighbors and its own position relative to its
local configuration.

The analysis of the algorithm first assumes that no two units move
at exactly the same time, and thus there is a temporal order to the steps
taken by the individual robots. In this case it is possible to model the
problem as a finite Markov chain in which each individual state itself is a
nonuniform random walk in an unbounded region of a possibly large
dimensional Euclidean space. We prove that each one of the random
walks is null-recurrent, and the underlying Markov chain is absorbing,
where the absorbing state corresponds to the desired configuration of the
robots into pairs. Thus with probability one, the robots will settle down
into a formation of groups of twos, spatially separated from one another.
The number of steps required for convergence however, seems to be
difficult to estimate since the process depends heavily on the initial
configuration of the units. The asynchronous case relies on the fact that
the protocol disallows two robots to attempt to move into the same seat.
In this case the evolution of the system can be viewed as taking place by a
succession of equiprobable moves of individual robots, and the process
can be modeled by a Markov chain as before.

2. Cellular Robotic Systems

A Cellular Robotic System (CRS) is a relatively new concept and
thus it is desirable to work with a well defined, simplified model in which
general problems can be studied and the correctness of the distributed
algorithms verified. The components and the basic properties of a general
CRS model is presented below. We formally define a robot as a quadruple
R =(T,ro,R,f) where:

T - the type of robot,

ro - initial state,

R - set of possible states,

[ - transition function from one state to another.

The transition function f is dependent on the current state and the state
of the robot’s neighborhood which is defined below.

A CRS is characterized by the following properties:



1. There are m independent robots where m > 1. The robots operate
autonomously and thus are not synchronous. Note that each specific
type of robot has the same R and f .

2. Thereare T types of robots where T > 1.

3. The space S in which the robots move is a  -dimensional con-
nected grid. Each position in the grid is called a sear and is
specifiable by its integral Cartesian coordinates with respect to some
chosen origin and set of k¥ axesin S . Two seats, 51,5, € § are
adjacent if they satisfy some relation s; P s . In the current model
used 51 P s, if and only if s; and s differ by 1 in exactly one
coordinate.

4. The seats which do not contain any robots are referred to as empty
seats. The empty space E of the given grid is defined as the union
of all the empty seats.

5. Each robot can sense and can be sensed by its neighborhood. This
is the only communication the robot has available. In the current
model, the d -neighborhood of a robot residing in a seat s is
defined as the union of seats in § which are of the form
s+(di,dy,...,dy) where ~d<d;<d fori=1 2,k

A robot may post a set of messages to be seen by the robots in its
neighborhood (possibly a different message for each neighbor). To sim-
plify matters, the neighboring robots are guaranteed to see the relevant
messages in a finite amount of time 8> 0.

6.  There is no centralized control or centralized data base. A robot
operates and makes decision based solely on the messages it senses
in its neighborhood and its intemal algorithm f .

7. The resources of the system and in particular the number m of
robots remains constant. Thus this model is a closed model.

8. The robots can move throughout the space S. Legal movement is
defined in the following manner: Suppose there is a robot r resid-
inginseat 5; attime ¢ . Ifattime ¢ the seat $2 € E is adjacent
to sy then at time ¢ + 3 the robot r may reside in seat 5, with
s1€ E .

3. The One dimensional Random Pairing Problem
3.1 The CRS Model for the RPP
The RPP model being studied has the following characteristics:

1. Itinitially contains a relatively large even number of the same type
of robots. Thus 7 =1 and m =2N for some positive integer N .

2. Thespace S under consideration is the one-dimensional grid of lat-
tice points which we take to be on the x -axis. Thus in this case S
and E have infinitely many seats.

3. The robots can only sense the neighborhood around themselves and
cannot see through other robots. The neighborhood of a robot is the
2-neighborhood as defined above.

The robots are equipped with a left-right orientation.

5. The movements of the robots is limited to the seats immediately
adjacent to them on the left and on the right provided these seats are
empty.

6. Each robot may post two signs left_occupied and right_move to its
right side, and similarly two signs right_occupied and left_move to
its left side.

The goal of this system is for the robots to to self-organize into
groups of twos. These groups of twos must be spatially separated by at
least one empty seat. Call a robot kappy when it has one and only one
neighboring robot. Individually, each robot secks happiness and takes
certain actions depending on the state of its neighboring cells to achieve
this goal. The system is stable when all the robots are happy.

Even though the robots are unaware of their location in relation to
the other robots, we shall label them with 1 through 2N from left to
right. Since the robots cannot jump over other robots and the model is
closed, this ordering remains fixed throughout the life of the system.

3.2 Description of the Algorithm f

A robot starts out by sensing its neighborhood. If both seats to its
left and to its right arc empty, then the robot moves to one of them after
selecting a random direction by a fair coin flip. If both seats are occupied,
then the robot posts the left_occupied sign on its right, and the
right_occupied sign to its left side. If the seat to the left of the robot is
empty and the seat to the right occupied, then the robot posts the
right_occupied sign on its left side and then checks the sign on the left
side of its neighboring robot. If the right_occupied sign is posted there,
then the robot attempts to move to the empty seat to its left. Otherwise, it
is happy, and does nothing. Similarly, if the seat to the robot’s right is
empty but the one to its left is occupied, then the robot checks the sign
posted on the left side of the neighboring robot. If left_occupied sign is
flagged there, then it attempts to move to the empty seat to its right. Oth-
erwise it is happy and makes no move.

Formally, the design of the algorithm f for each robot is as fol-
lows:

LOOP FOREVER

Sense to the left and right

IF both seats to the left and right are empty THEN
BEGIN
MOVEC(left) or MOVE(right) with equal probability
set left_occupied = right_occupied = FALSE
END

ELSE if both seats to the left and right are occupied THEN
BEGIN
make no move
set left_occupied = right_occupied = TRUE
END

ELSE if left seat is empty and right seat occupied THEN
BEGIN
set right_occupied = TRUE

IF right_occupied of the right neighbor = FALSE THEN make no
move

ELSE set right_occupied = FALSE
MOVE(eft) :
END

ELSE if right seat is empty and left seat occupied THEN

BEGIN

set left_occupied = TRUE

IF left_occupied of the left neighbor = FALSE THEN make no
move

ELSE set left_occupied = FALSE

MOVE(right)

END

END LOOP

Note that the above algorithm assumes that no conflicts occur when
two robots decide to move into the same empty seat. Under this assump-
tion (to be justified below), the changes in the configuration of the robots
can be put in a discrete temporal sequence where from one configuration
to the next only one robot scems to make a move. This allows us to model
the evolution of the configuration as a random process.

3.3 The Move Algorithm

The justification of non-simultaneity of the movements of robots to
the same empty seat can be resolved by replacing the MOVE(Icft) and



MOVE(right) commands in the algorithm f by actual subprocedures
that resolve conflicts while still enabling us to model the changes in the
configurations as a random process. In order to implement these subpro-
cedures, we allow each robot to post a left-move sign to its left side and a
right_move sign to its right, indicating its intention to move in either
direction by flagging the proper sign. Note that the move algorithms
themselves are probabilistic.
PROCEDURE MOVE(left)
{Assume the robot is in seat s }
BEGIN
set left_move = TRUE
IF the seat s—2 is empty THEN

BEGIN

move to the left seat

set left_move = FALSE

END

ELSE BEGIN
X: IF right_move of robot in s-2 is = FALSE THEN
BEGIN
move to the left seat
set left_move = FALSE
END

ELSE BEGIN
Y: Set left_move = TRUE/FALSE with probability 4
JF seat s—1 isnot empty THEN

BEGIN

set left_move = FALSE

EXIT MOVE(left)

END

ELSE BEGIN
IF left_move = FALSE THEN GOTO Y
IF left_move =TRUE THEN GOTO X

END
END

END MOVE(left)

omitted.

4. The Coordinate-free Representation of the RPP

Suppose at time ¢ , robot i is residing at the lattice point r; (t) in
S . Then at time ¢, the configuration of the robots is completely
described by the position vector 7 (£)=(ri(t),r2),...raw@))
where ri@)<ra@®)<---<rpn(@) with the initial  state
r(0)=(r10),r20),...,ron(0)). Since the separation of the robots
rather then the actual number of empty seats between them is important
for the RPP, we may represent the partern of r (t) by a coordinate-free
binary string & (¢t)=b1(t)b2(t) - bay-1(¢t) of length 2N-1 where
fori=1,2,..,2N-1

0
b,-(z>={,

Thus in b (¢ ), ones represent one or more spaces between robots and the
zeros indicate that the robots are touching. As an example the following
configuration of six robots

if iq@®-ri@)=1,
if riqq@-r;@¢)>1.

The procedure MOVE(right) is similar to MOVE(left) and will be

XX___X XX

where the symbol x denotes the position of a robot and _ an empty
seat, is represented by the binary string

01101 .

The system is in a stable state when for some ¢ 20,

b(t)=b,=0101---010=0(10¥1 . @)

This means that the system has converged to the desired pattern, since the
configuration represented by 0(10)¥-1 consists of pairs of robots
separated by empty seats.

We now consider the effect of the change of state of the robots from
r(t) to r(s+1) on the string b(t). When robot i with
1<i <2N makes a move, the change in the string b (#) only

depends locally on the substring b;_1(#) b; (¢ ) bis1(t) and affects only
this portion. The possible local transformations on b (¢) are indicated
below where the arrows indicate the direction of time: )

A) 111 - 1%10
B) 110 «— 1
C) 011 «— 001 @42
D) 100 - 010

In the special case of the leftmost robot (i =1 the local transformations
become

E) 10.. «—> 00...

F) 11.. - Ol.. @3
and for the rightmost robot (i =2N ) they are

G) ..01 «— .00

HY .11 > ..10 @4

Now consider the finite Markov chain M whose state space con-
sists of all binary strings & of length 2N-1. Note that in going from
r(t) to r(et+1), either b (t+1)=b(t), or b (t+1) is obtained
from b (t) by the application of one of the local transformations A
through H given in (4.2)-(4.4). The state space of the Markov chain M
for four robots is shown in Figure 1.

Figure 1 : The Markov chain M associated to the RPP.
The absorbing state is b, =010.

5. The Convergence of the RPP

We want to show that starting at any initial configuration, the stable
state represented by b, is reached with probability one i.e., M is an
absorbing chain. Note that since there are no transitions out of b, , this
state is absorbing. - :

The proof of convergence can be broken down into two parts.

Show that starting in any non-absorbing state b there is zero pro-
bability of remaining in that state and a positive probability of tran-
sition to any neighboring state given by the transformations’ A - H
above. '

(II) The absorbing state b, can be reached from every state & .

@



Proof of Part (I) :

Assuming part (I) for the moment, we first prove the easier part (II).
For the proof, the following inductive argument is used:

Given a nonabsorbing state & , by transformations A, B, C, F, and
H above, it is clear that from b one can reach a state with no two con-
secutive ones. Thus without loss of generality, we may assume that b
has no two consecutive ones. Furthermore, by using the transformation G
if necessary, we may also assume that by_; =0. Now consider the two
rightmost digits. If these are (10) then this section is stable. If the next

digit to the left is by, then then either b;=0 and we are done, or b .

can be changed to zero by transformation H. Thus we may assume that
there is another pair of digits to the left adjacent to this (10). If this pair is
(00) then the left zero must change to a one. If there is a one to the left of
the (00), it is possible for the left zero to become a one by transformation
B. If there is a zero to the left of the (00), that zero can change to a one if
there is a one to its left. Now consider the leftmost one in b . If there are
no ones to the left of this position in b, one can be created by the
transformation G above. The leftmost one can be propagated to the right
by transformation B or D until there is a one to the left of the (00) pair in
question which can then produce the (10) stable pair. The next leftmost
pair can then be examined. If it is a (01) it can be changed to a (00) and
the previous case applies. Clearly, the final string reached is b, . O

Example 1 :

00000

10000 (F)

01000 (D)

00100 (D)

00010 (D)

(now consider the next two positions to the left)
10010 (F)

01010 (D)

Example 2 :

1110111

1110110 (G)

1010110 (A)

1010100 (B)

1010010 (D)

(now consider the next two positions to the left)
1001010 (D)

(now consider the next two positions to the left)
0101010 (D)

Proof of Part (I)

For the proof of this part of the convergence result, we recall that in
the binary encoding b (t)=b (t)ba(t) - bav 1 (t), the digit
bi (t)=1 if and only if the robots i and i+1 are separated by a posi-
tive number of seats. We first consider an exemplary case. When the
process is in state 1 (01)¥-!, this means that the robots 1 and 2 are
separated by some rp(t)—r1(t)=X;(t)>0 seats, the robots i and
i+1 are paired up for i =2,3,..,2N-2, and the robots 2N-1 and
2N are separated by ra, (£) —roy—1 (¢) =Xon-1 (¢) > 0 seats. Thus the
projections X ;(z) and Xpy_;(t) define two independent one-
dimensional random walks X; and X, with the identical one-step tran-
sition function

I ifx=4%1,
1 ifx=0,

P@,x)=] * 6.1
0 otherwise .

The hitting time of a one-dimensional random walk X with
X (0)=x (0) > 0 is defined by

T(x)=min{t|X()=0}

79

It is well-known [2, 4] that the hitting time of a one-dimensional random
walk X with the one-step transition function

p  ifx=%1,

1-2p if x=0,
P(0,x)= PR

0 otherwise .

forany p with O <p < is null-recurrent. In other words
Pr{T(x) <e} =1,

E{T(x)) = .

Thus in M , there is zero probability of remaining in state 1(01)V-!
and a positive probability of transition to any neighboring state. Clearly,
a similar argument can be applied for the states 0(01)W-! and
(10)N-10.

In the case of a general state b of M , we consider the subwords of
the string b consisting of maximal consecutive sequences of zeros and
ones, each of length > 1.

Example :

1110100011110 - 111,000, 1111

A maximal consecutive sequence of zeros corresponds to a configuration
of consecutive robots of the form

and a maximal sequence of ones to a configuration of the form

X _ XX XX

where the robots are separated by a positive number of seats.

Algorithm f allows no conflicts of movement between the boun-
daries of such blocks. Thus the analysis can be restricted to independent
random walks that correspond to each such maximal sequence. In the case
of a maximal sequence of zeros, the situation is identical to the case of the
analysis of the state 1(01)V-! since here only the extreme zeros can

tum into ones. Thus we only need to study the random walk that
corresponds to a maximal consecutive sequence of ones in b .

Consider a maximal sequence of ones in » of length n . The
corresponding random walk

X[n]={X®=(X1(t),X20),...X: (1)) }
in n —dimensional Euclidean space has the one-step transition function

% ifxe (fer,ten, t(ei—en))
for 1<i<n,

P(0,x) = 1-,2% if x=0,
0 otherwise ,

where e;,e;,...,e, are the standard basis vectors and h 22 is the
number of robots in pattemn b which can potentially make a move. If the
string b has i, singletons O and i blocks of zeros of length [ in its
decomposition, then & is given by

. 2N_1 .
h=2N-2i;- 121 (-1

As an example of the random walk X[n], the transitions for the
case n =2 are given in Figure 2. Note that the positive axes are absorb-
ing boundaries. Absorption at the x -axis corresponds to the transforma-
tion 11 — 01, and absorption at the x;-axis corresponds to the transfor-
mation 11 - 10.

Note that in general the robot that corresponds to the first 1 in the
maximal sequence of ones under consideration may not be the leftmost
robot in the system, forcing X; to be bounded. A similar situation holds
for the rightmost robot. However, these cases do not affect the following



analysis in any significant way.
X2

A

—€rte; ez

—€ €

—€2 €17€2

o X1

Figure 2 : The randomwalk X[2].

The projections of X[n] define n one-dimensional random walks
X; with transition function

+  ifx=+%1,
1-1 if x; =0
T i )
P;(0,x) =
0 otherwise .

Analogous to (5.1), the i* -hitting time of X; with X; (0)=x; >0 is
defined by

T; (x)=min { ¢|X; ¢)=0) .
The hitting time of X[n] where

XO)=x=(x1,x2,...,% ), ;>0 for1<i<n

is defined by
T(x)=min { T1(x),T2(x),... T, (x) }

Set
pi=Pr{Ti(x)<e]} .

For the convergence of the RPP, we need to show that p; >0 and
p1+p2+..+pa=1. To show p; >0, consider the region R in # -
dimensional space defined by x; =1 for j#i,and ; 20.1f i #n,
then the steps e; +e;41 repeated x; times is a sample path of positive
probability in R whichends at x; =0. Thus p; >0.1If i =n , then the
steps —e, can be chosen instead. To show pi+pa+..+p, =1, it
suffices to show that 7T (x) is null-recurrent.

Theorem 5.1 The hitting time T (x) is null-recurrent.

Proof : Associate with the process X[n] the n one-dimensional ran-
dom walks X{,X7,...,Xn defined by deleting from the sample path of
each projection X; (¢) the parts of the path at which X; (z) does not
change. Then the transition function of X;* is

,} if x==%1,
P(0,x)= 0 otherwise .

Furthermore, T/ (x)<7T; (x). Note that the projection of the process

X[n+2] onto the first n coordinates is just X[n] and
min {7} ,73,..,73,Tasz } Smin (T} ,T3,.., 75}

Smin{Tl,Tz,...,T,,]

But the process Xpi; is independent of the processes X1, X3 , ..., Xn
and hence
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E{min[T}.Ti,...,T:,TLz ]} =

=E{min(T{,Ti,..A,T;)}E{T;.,z}

But the one dimensional random walk X3, is null-recurrent. Thus
E (Tpyy } =oo.Thus T (x) itself must be null-recurrent. (J

In view of Theorem 5.1, starting in any non-absorbing state b there
is zero probability of remaining in b and a positive probability of transi-
tion to any neighboring state given by the transformations A through H .
Therefore, starting at any initial configuration, the system will converge
to the desired state of pairs of robots separated by empty seats with proba-
bility one.

Conclusion

The robotics system considered in this paper is cellular, an is essen-
tially characterized in having no centralized control, no centralized data
base, no shared memory, and no synchronous clock. Each robot in the
system executes an identical internal algorithm and is equipped with lim-
ited sensing power.

A typical reconfiguration problem called the Pairing Problem for
such an autonomous robotic system on the one dimensional grid is stu-
died. Here the global goal of the system is to self-organize into units of
physically adjacent pairs separated by empty seats. By making use of ran-
domization in the decision making process of each robot, the evolution of
the system can be modeled as a Markov chain, where each state
represents a nonuniform random walk. The chain is absorbing, showing
that the desired configuration will be reached with probability one.

To estimate the expected time for the system to converge seems
difficult. However, with proper modifications in the distributed algorithm,
the probabilistic approach taken here should imply convergence to the
desired pattern when the underlying space is bounded with reflecting
boundary walls.
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