Graphs

• Fundamental abstractions for many real-world situations
 – E.g. Internet topology, social networks, biological networks
Studying Real Graphs

• Research community: critical for progress in many areas
 – Understand underlying structure and process
 – Validate models and theories
 – Reveal hidden or unknown properties

• Application designers
 – Validate new algorithms and features
 – Provide guidance on future design
Challenges of Obtaining Real Graphs

• Most complete graphs are only available by data owners
 – e.g. Facebook, AS networks

• Crawling: far from ideal solutions
 – Many data are not crawlable
 – Requires significant resources
 • Time, machines
 – Partial information leads to inaccurate conclusions

• Graph data sharing is an alternative
 – SNAP library: graph datasets shared online by SNAP group[1]

Risks of Graph Data Sharing

- Graph data contains sensitive information
 - User identities (nodes), interactions (edges)
 - Private meta data information
 - e.g. Religion, age

- Protect graph privacy by naïve anonymization
 - Remove all meta data, leaving only graph structure
 - Not enough: examples of privacy leaks
 - AOL dataset, 2006: 650K user search histories[1]
 - Netflix dataset, 2008: 480K user movie viewing histories (led to lawsuits)[2]

Why Naïve Anonymization Failed?

• Easily broken by using *external* data

• Kleignberg’s active attacks\(^1\)
 – Embed adversary information (a fake subgraph)
 – Identify individuals by locating the fake subgraph

• Narayanan’s de-anonymization\(^2\)[3]
 – Use public data to cross compare

Need to protect graph privacy!

\(^1\)Backstrom, Dwork and Kleinberg. Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. WWW 2007

\(^2\)Narayanan and Shmatikov. Robust de-anonymization of large sparse datasets. Security and Privacy 2008

\(^3\)Narayanan and Shmatikov. De-anonymizing social networks. Security and Privacy 2009
Outline

• Motivation
• Background
• Research Directions
 – k-anonymity Based Modification
 – Graph Randomization
 – Cluster-based Generalization
 – Cryptographic Approaches
• Open questions
Targeted Scenarios

- Conventional graph sharing
 - Public sharing: graphs are public available
 - SNAP library
 - Private sharing: graphs shared with collaborators
 - Facebook share data with third-party applications

- Graph query answering
 - Graph not shared
 - Only queries allowed on the graph through a controlled interface
Definitions

• **Graph privacy breaches**\[1\]\[2\]
 – Identity
 – Link
 – Meta data

• **Graph utility**
 – Structural loss
 • # of changes
 • Probability of error when reconstructing
 • Property-based measurement
 – Meta data loss

Preserve Graph Privacy

• Goals
 – Prevent certain privacy breaches
 – Minimize graph utility loss

• Challenges
 – Graphs contain complex details
 – Graphs are often highly dynamic
 • Growing and changing networks
 – Scalability
 • Facebook: 1.2B active users per month
Existing Solutions

• Public graph sharing: focus on operations on the graph
 – Add noise to the graph
 • k-anonymity based modification
 • Graph randomization
 – Summarize the graph
 • Clustering-based generalization

• Private graph sharing: focus on data controlling mechanism
 – Cryptographic approaches
k-anonymity Based Modification
What is k-anonymity?

- A privacy definition: each individual cannot be distinguished from at least k-1 others
 - Prevent individuals from being uniquely identified

k-anonymity to Protect Degree Distribution

• Assumption
 – Adversaries know *degree* of a target node
 – Use degree to narrow down targets to disclose identity

• Targeted output
 – Every node has the same degree with at least k-1 other nodes

• Algorithm
 – Extract degree sequence
 – Make up k-anonymous degree sequence
 – Modify the original graph accordingly

Other k-anonymity Methods

• Differ in adversary assumptions
 – Applied to: direct neighborhood[1], any surrounding subgraph[2][3]
 – Usually aim to prevent identity disclosure

Pros
- Intuitive
- Easy to verify

Cons
- Specific assumptions on adversaries
- High graph utility loss
- High computational complexity to minimize modification

[1] Zhou and Pei. Preserving privacy in social networks against neighborhood attacks. ICDE 2008
[2] Zou and Chen. K-automorphism: A general framework for privacy preserving network publication. VLDB 2009
[3] Cheng, Fu and Liu. K-isomorphism: privacy preserving network publication against structural attacks. SIGMOD 2010
Graph Randomization
Graph Randomization

• More general: little assumption on adversary

• Randomization techniques
 – Random edge modification
 – Produce synthetic graphs similar to original graphs

Basic Randomization

• Strategies
 – Rand Add/Del
 • Add and delete edges
 • Preserve total # of edges
 – Rand Switch
 • Switch endpoints of a pair of edges
 • Also preserve degree

• Discussion
 – Computationally efficient
 – Significant modification in graph structure

Structure-Preserving Randomization

• Motivation: improve graph utility by remaining certain features

• An example: spectrum-preserving randomization
 – Aim to protect eigenvalues
 – Apply basic randomization only to edges that preserve the target eigenvalues

Pro
 Simple and usually efficient

Con
 Probabilistic manner, not guarantee individual privacy

MAE 12/09/14 Qingyun Liu
Measurement-Calibrated Graph Model

- Motivation: provide synthetic graphs that remain features

- Framework

[1] Sala, Cao, Wilson, Zablit, Zheng and Zhao. Measurement-calibrated graph models for social network experiments. WWW 2010
Calibrating Models

• Determine optimal model parameters
 – Generate synthetic graphs
 – Measure graph similarity
 – Search parameter space

• Privacy concerns for generated synthetic graphs
 – What if they are too similar to the original graph?
 – How to guarantee privacy?
 – How to generate private synthetic graphs?
Generate Private Synthetic Graph

• Solution: differential privacy
 – A numerical metric to quantify privacy[1]
 – Provide privacy guarantees on the synthetic graphs[2][3]

• Framework

Pros
 Do not reveal real data, with privacy guarantee
 Much easier for large-scale data sharing

Con
 Difficult to capture all graph properties in synthetic graphs

Clustering-based Generalization
Method Framework

• Motivation: use graph summarization
 – Hide privacy details by publishing only *aggregated* information
 – Still useful to study macro-properties

• Framework
 – Construct a super graph
 – Publish information about the super graph
 – If needed, generate random sample instances from the generalization for detailed analysis

Hay’s Clustering Method

• Scenario
 – Consider only graph structure
 – Prevent identity disclosure

• Method
 – Choose a partition of nodes
 – Build the super-graph

• Published data
 – Super graph structure
 – Some statistic information

MAE 12/09/14
Campan’s Clustering Method

• Scenario
 – Nodes have meta data, edges don’t
 – Prevent identity and meta data disclosure

• Method
 – Structural generalization: similar to Hay’s
 – Meta data generalization
 • Categorical, numerical

Pros
 Widely applied, especially multiple disclosures may happen
 Low risk for individual privacy

Con
 Maintain only macro-properties, graph utility is doubted

MAE 12/09/14 Qingyun Liu
Cryptographic Approaches
Cryptographic Approaches

• Private sharing privacy breaches: also aggregated information
 – Graph structure, statistics

• Emphasis on controlling mechanism
 – Data access: access control
 – Data exchange: secure computation

Access Control Protocols

• Motivation
 - manage a resource so that it is accessible only to authorized users

• Framework

1. Resource request

2. Access rules

3. Provide proof

4. Ensure the proof and give access

MAE 12/09/14 Qingyun Liu
Secure Computation

• Motivation
 – Multi parties with their own graphs
 – Want to jointly compute a function, while keeping their graphs private

• Graph function
 – Calculate geometric problems
 • Convex hull
 – Graph algorithm

Pros
Graph data often unchanged
Orthogonal direction to previous methods

Cons
Never foolproof, e.g. social engineering
Often high computation complexity

Blanton, Steele and Alisagari. Data-oblivious graph algorithms for secure computation and outsourcing. ASIACCS 2013
Outline

• Motivation
• Background
• Research Directions
• Open Questions
Thank you!

Any Questions?
Backup Slides
Beyond K-anonymity

- Limitation of k-anonymity: can still cause meta data disclosure

- L-diversity: at least L different values of meta data

- T-closeness: distance between local meta data distribution and overall distribution <= t

[2] Li, Li and Venkatasubramanian. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. ICDE 2007