Towards Graph Watermarks

Xiaohan Zhao, Qingyun Liu, Haitao Zheng, Ben Y. Zhao

SAND Lab, UCSB
qingyun_liu@cs.ucsb.edu
Sensitive Datasets Captured in Graphs

• Graphs are everywhere
 – e.g. Internet networks, Social networks, Biological networks

• Many of today’s sensitive datasets are captured in large graphs
 – e.g. maps of autonomous system, friendships in social networks, interaction of proteins in personal health care
Desires to Securely Share Graphs

• Data owners: often want to share data with selected parties, without data leakage into public domain
 – ISP vs networking equipment vendor
 – Facebook vs trusted academic collaborators

• Research community: need real graphs for progress in many areas
 – Understand underlying structure and process
 – Validate models and theories
Current Solutions: Far From Ideal

• Option 1: Build strong access control mechanisms
 – Have limited control once the data is shared
 – Attacks on human elements
 o e.g., phishing, baiting

• Option 2: modify data to reduce the impact of potential leakages
 – Usually significant modification, make data noisy
 o Subsampling, summarization, synthetic graphs
 – Significantly reduces “utility” of graph dataset

A new alternative: graph watermarks
Watermark: Data Signature

• Watermark: *signature* in data as ownership identifier
 – Data owner embeds a signature in the data
 – If the data is leaked, announce ownership by the signature

• Widely used in digital files to limit piracy

• **Graph watermark**: signature in a graph
 – Watermarks applied to graphs
 – Serve as a deterrent against graph leakage
Our Goals

• Design an **effective** graph watermark system
 – **Low distortion**
 o Small impact on graph structure
 o Difficult to detect
 – **Uniqueness**
 o Not occur naturally nor easily faked
 o Existence securely associated with an authorized party
 – **High robustness**
 o Watermarks remain after attacks
 – **Efficient** to embed and extract watermarks
Scenario: Share Graph With Multiple Users

- Each user uniquely associated with a watermark
- Once find a leaked version, identify the source by watermark

Acts as “deterrent” against data leakage
Outline

• Motivation

• Graph Watermark System
 – Watermark Embedding
 – Watermark Extraction

• Key Properties

• Experimental Evaluation Summary

• Conclusion
Graph Watermark System Overview

• **Embedding:**
 add watermark into the original graph
 - Generate watermark with G’s secret key K^G + user i’s signature S^i
 - Require joint efforts from data owner and user i

• **Extraction:**
 search in a leaked graph for any watermark
Graph Watermark System Overview

- **Embedding:**
 - Add watermark into the original graph
 - Generate watermark with G’s secret key K^G + user i’s signature S_i

- **Extraction:**
 - Search in a leaked graph for any watermark

Challenges:
Rely on only *graph structure*, not meta data \rightarrow
Subgraph isomorphism problem (NP-complete)

Our Solution: Efficient Pruning Algorithm
Watermarking Embedding

Step 1: verify user i’s signature S^i

- A random generator seed $\Omega^i = K^G + S^i$

```
Data Owner

Pub^i

Pub^i(S^i) == T^i?

User i

Prv^i(T^i)

S^i = Prv^i(T^i)

Public-private key pair <Pub^i, Prv^i>
```
Watermarking Embedding

Step 1: verify user i’s signature S^i
- A random generator seed $\Omega^i = K^G + S^i$

Step 2: generate the watermark
- A random graph of k ordered nodes, seeded by Ω^i

Step 3: select embedding location
- A subgraph of k ordered nodes in G, seeded by Ω^i

Step 4: embed the watermark (XOR)
Watermarking Embedding

Step 1: verify user i’s signature S^i
 – A random generator seed $\Omega^i = K^G + S^i$

Step 2: generate the watermark
 – A random graph of k ordered nodes, seeded by Ω^i

Step 3: select embedding location
 – A subgraph of k ordered nodes in G, seeded by Ω^i

Step 4: embed the watermark (XOR)
Node Naming Algorithm

• Generate “label” for nodes
 – Regenerate “meta data” from only graph structure
 – Label = an array of sorted neighboring degrees

• Efficient in practice
 – Real graphs often have high node heterogeneity
 – Small # of nodes share the same label
Watermark Extraction

Data owner: a leaked graph G^{leak}, original graph G, random generator seed Ω^i for each user (i=1,2,…)

- **Step 1**: regenerate embedded watermark
 - Repeat watermark embedding for each user

- **Step 2**: search if any embedded watermark in G^{leak}
 - Pruning algorithm

\[\Omega^1 \]
\[\Omega^2 \]
\[\Omega^3 \]
\[\ldots \]
Pruning Algorithm

• Exhaustive search
 – Efficient by restricting to small # of nodes

• For each embedded watermark E^i (i=1,2,…)
 – Find candidates in G^{leak} by matching node label
 – Enumerate combinations and check graph structure

• Stop until matching or exhausting all combinations
Watermark Uniqueness

• Watermark uniqueness: an embedded watermark not isomorphic to
 – Any subgraph of the original graph (naturally occurring)
 – Any other embedded watermarks (watermark collision)

• Proof sketch
 – Given original graph G, users $x \neq y$, the embedded watermark of user x E_x, the watermarked graph of user y G_y'
 – Step 1: with high probability, E_x is not isomorphic to a given subgraph in G nor G_y'
 – Step 2: with high probability, E_x is not isomorphic to any subgraph in G nor G_y'

Details
Watermark Applicability

• Graphs suitable for watermarking
 – Can “well hide” embedded watermark
 – Judging criteria
 o Node degree
 o Subgraph density

• Test on 48 real network graphs
 – Represent 10 types of networks
 o e.g. OSNs (Facebook, Youtube …), communication networks
 – Sizes: thousands to millions nodes/edges

• Most (35) graphs are suitable
 – Unsuitable: only 3 types
 o e.g. Road networks
 – Sparse graphs
Experimental Evaluation Summary

• Low distortion
 – Node/edge modification < 0.04%

• High efficiency
 – e.g. graph with 2M nodes, 16M edges
 o Embedding: < 2 mins
 o Extraction: < 4 mins when parallelized across 10 machines

• Robust to attacks
 – Single attack model: have one watermarked graph
 – Collusion attack model: have multiple watermarked graphs
 – Multiple defense techniques (details in paper)
Conclusion

• Graph watermarks useful in many applications
 – e.g. tracking data leaks, data authentication

• Our work: a first step
 – Identify the problem
 – Initial implementation: an efficient system with unique, robust watermarked graphs in low distortion

• Future work: improve robustness against many other attacks
Thank you
Any questions?
Watermark Embedding

- **Select embedding location**
 - Sort node labels of G
 - e.g. use secure one-way hash like SHA-1
 - Use Ω to randomly pick labels as selected nodes
 - If multiple nodes have the same labels, sort them in any deterministic order and use Ω to pick one

- **Embed watermark**
 - Match both subgraphs by node order
 - Apply XOR on each pair of nodes
Fast Pruning Algorithm

• Complexity is bounded: \(O\left(\sum_{m=2}^{k} \left(\prod_{i=1}^{m} |C_i| \right) \cdot \frac{m}{2} \right) \)
 – \(|C_i|\): # of candidates for \(i\)-th node in embedded watermark

• In practice, far from the worst case scenarios
 – Real graphs have high node heterogeneity \(\rightarrow\) small \(|C_i|\)

• Repeated empirical experiments show efficiency

<table>
<thead>
<tr>
<th>Graph</th>
<th># of Nodes</th>
<th># of Edges</th>
<th>Embedding</th>
<th>Extraction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook (LA)</td>
<td>603,834</td>
<td>7,676,486</td>
<td>< 1min</td>
<td>< 1min</td>
</tr>
<tr>
<td>Flicker</td>
<td>1,715,255</td>
<td>15,555,041</td>
<td>< 2min</td>
<td>< 4min</td>
</tr>
</tbody>
</table>

*: Extraction parallelized across 10 machines, each with 192 GB RAM
Watermark Uniqueness

- Intuition: embedded watermark is a special graph, when large enough difficult to find isomorphism in G
 - Erdos-Renyi random graph with edge probability $\frac{1}{2}$
 - Size $k \geq (2+\delta) \log_2 n$
 - n: size of G, $\delta > 0$
- We prove when $k \geq (2+\delta) \log_2 n$
 - Prob. of embedded watermark isomorphic to any subgraph in G
 - $P < \frac{1}{2} \left(\frac{\delta k^2}{2(2+\delta)} \right)^{-\frac{3k}{2}+1}$
 - Reduces exponentially to 0 as k increases
 - e.g., for G with 5M nodes, $k = 52$, $P < 10^{-30}$
Watermark Applicability

• 48 real graphs: 35 suitable

<table>
<thead>
<tr>
<th>OSNs</th>
<th>Collaboration networks</th>
<th>✔</th>
<th>Citation Networks</th>
<th>Communication networks</th>
<th>✔</th>
<th>Web graphs</th>
<th>Location based OSNs</th>
<th>✔</th>
<th>AS graphs</th>
<th>Amazon Co-purchasing Networks</th>
<th>✗</th>
<th>P2P networks</th>
<th>Road Networks</th>
<th>✗</th>
</tr>
</thead>
</table>

• Judging criteria for a suitable graph G
 – Have expected **node degree** for embedded watermark between
 o [min degree in G, max degree in G]
 – Have expected **graph density** for embedded watermark
 o [min density in k-size subgraph in G, max density in k-size subgraph in G]
Attack Models

- **Single Attack:** have *one* watermarked graph
 - Best strategy: randomly adding or deleting edges
 - Defense: additional features in system
 - e.g. add randomness in node labeling and matching, embed a watermark multiple times

- **Collusion Attack:** have *multiple* watermarked graphs
 - Best strategy: compare graphs to remove watermarks
 - Defense: hierarchical watermark embedding
 - Embed watermarks with potions of overlap
Hierarchical Embedding