1 Recap

Last class:

1. Theory of PRF from PRG
2. PKE definition. SMS
3. RSA

Today:

1. Formalize Trapdoor functions (permutations)
2. Construction of PKE
 a) Single Message Security (SMS)
 b) Multi Message Security (MMS)

2 Trapdoor Functions

Definition - Collection of Trapdoor Functions:

\[F = \{ f_i : D_i \to R_i \}_{i \in I} \]

1) Easy to sample a function. I.e. \(\exists \) PPT \(\text{Gen}(1^n) \to (i,t), i \in I \)
2) Easy to sample from a given domain \(D_i \)
3) Easy to evaluate \(f_i \)
4) Hard to invert. I.e. \(\forall \text{nu} \) PPT \(A, \exists \) negligible \(\epsilon \) s.t.
 \[Pr[(i,t) \leftarrow \text{Gen}(1^n), x \leftarrow D_i, y = f_i(x), x' \leftarrow A(i, y) : f_i(x') = y] \leq \epsilon(n). \]

(*) 5) \(\exists \) PPT inverter \(E \) s.t.
 \[Pr[(i,t) \leftarrow \text{Gen}(1^n), x \leftarrow D_i, y = f_i(x), x' \leftarrow E(i,t,y) : f(x') = y] = 1 \]

We notice that except for (*) this is the same as the definition of a collection of OWF’s.
Theorem - RSA collection is a collection of TDP’s:
A. We know they are permutations
1) \(\text{Gen}(1^n) : N = p \times q \) random n-bit primes \(e \leftarrow \mathbb{Z}^*_{\phi(N)} \)
 \(i = (N, e) \)
 \(t = d = e^{-1} \text{mod}(\phi(N)) \), output \((i, t) \)
2) - 4) Same as before when showing RSA is a collection of OWF’s
5) \(E(i = (N, e), t, y = x^e \text{mod}(N)) = y^t \text{mod}(N) = x \)

3 Construction of PKE

Attempt Construction of PKE from a collection of TDP \(F = \{f_i\}_{i \in I} \)
\(\text{Gen}(1^n) : \) Sample \(PK = (N, e) \) as in RSA collection
\(sk = (d, N) \)
\(((N, e, d) \) sampled as in RSA collection)\
\(Enc(pk, x) = x^e \text{mod}(N) \)
\(Dec(sk, c) = c^d \text{mod}(N) \)

When we assume \(D_i = R_i = \{0, 1\}^n, Gen_F, E_F \) our construction attempt becomes:
\(\text{Gen}(1^n) : \) Sample \(Gen_F \rightarrow (i, t) \)
\(pk = i \)
\(sk = (t, i) \)
\(Enc(pk, m) : c = f_i(m) \)
\(Dec(sk = (i, t), c) : \) Compute \(m = f_i^{-1}(c) \) by \(E_F(i, t, c) \)

Step 1: Constructing a bit Encryption Scheme \(\pi \)
\(Enc(pk, b) : r \leftarrow U_n \)
\(z = f_i(r) \)
\(y = h(r) \oplus b \)
\(c = z, y \)
\(Dec(sk = t, c) \)
\(c = z, y \)
\(r = f_i^{-1}(z) \)
\(b = y \oplus h(r) \)

Definition: We say a predicate \(h \) is a hard-core predicate (HCP) for a collection of TDP’s \(F \)
if:
1) \(h \) is efficient to evaluate
2) Hard to Predict \(\forall \nu PPT \ A \exists \text{negligible } \epsilon \text{ s.t.} \)
\(Pr[i, t] \leftarrow \text{Gen}(1^n), x \leftarrow U_n, b \leftarrow A(f_i(x)) : b = h(r) \leq \epsilon(n) \)
Theorem 1: π is SMS

Proof:
Let $G_i(r) = f_i(r)||h(r)$

$\{(pk, sk) \leftarrow Gen(1^n) : pk, Enc(pk, 0)\} \approx (pk, sk) \leftarrow Gen(1^n) : pk, Enc(pk, 1)\}$

$\iff \{(i, t) \leftarrow Gen(1^n), r \leftarrow U_n : i, G_i(r) \oplus (0^n||0)\} \approx \{(i, t) \leftarrow Gen(1^n), r \leftarrow U_n : i, f_i(r), h(r) \oplus 1\}$

Claim 1:
$\{(i, t) \leftarrow Gen_F(1^n) : i, G_i(U_n)\} \approx \{(i, t) \leftarrow Gen_F(1^n) : i, U_{n+1}\}$

Proof:
Same as the proof for PRG using 1-bit expansion.

Applying Claim 1:
$\{D_1\} = \{(i, t) \leftarrow Gen_F, r' \leftarrow U_{n+1} : r' \oplus (0^n||0)\} \approx \{D_2\} = \{(i, t) \leftarrow Gen_F, r' \leftarrow U_{n+1} : r' \oplus (0^n||1)\}$

$\{D_1\} \approx \{D_2\}, \{D_1\} \approx \{H_1\}, \{D_2\} \approx \{H_2\}$

$\Rightarrow \{H_1\} \approx \{H_2\}$ by transitivity.

Step 2:
Bit encryption \Rightarrow String Enc
SMS \Rightarrow MMS

Definition of Multi Message Security (MMS) for bit encryption:
We say π is MMS if $\forall \ poly q, \forall \{\vec{m}_0\}, \{\vec{m}_1\}$

$\{(pk, sk) \leftarrow Gen(1^n) : pk, Enc(pk, m_0[1]) ... Enc(pk, m_0[q])\} = \{H_0\}$

$\approx \{(pk, sk) \leftarrow Gen(1^n) : pk, Enc(pk, m_1[1]) ... Enc(pk, m_1[q])\} = \{H_q\}$

$\vec{m}_b = m_0[1]...m_0[q]$, where $\forall \ i$, $m_b[i]$ are single bits.
Theorem: Any π that is SMS is also MMS

Proof for bit Encryption:
Given π is SMS:

$\{D_1\} = \{(pk, sk) \leftarrow Gen : pk, Enc(pk, 0)\}$

\approx

$\{D_2\} = \{(pk, sk) \leftarrow Gen : pk, Enc(pk, 1)\}$

We want to prove the left
Fix $\{\vec{m}_0\}, \{\vec{m}_1\}$.

$\{H_1\} = \{(pk, sk) \leftarrow Gen : pk, Enc(pk, m_1[1]), Enc(pk, m_0[2] ... Enc(pk, m_0[q]))\}$

Claim 1: $\{H_0\} = \{H_1\}$
Proof by SMS of π

$\{D_1\} = \{(pk, sk) \leftarrow Gen : pk, Enc(pk, m_0[1])\}$

\approx

$\{D_2\} = \{(pk, sk) \leftarrow Gen : pk, Enc(pk, m_1[1])\}$

Consider $M(pk, c)$:

$c_2, ..., c_q = Enc(pk, m_0[2]) ... Enc(pk, m_0[q])$.

Output $pk, c_1 = c, c_2, ..., c_q$

$\{M(D_1)\} = \{H_0\}$

$\{M(D_2)\} = \{H_1\}$

By closure under efficient operation $\Rightarrow \{H_0\} \approx \{H_1\}$

$\{H_i\} = \{(pk, sk) \leftarrow Gen : pk, Enc(pk, m_1[1]...Enc(pk, m_1[i], Enc(pk, m_0[i+1]...Enc(pk, m_0[q]))\}$

Claim 2: $\forall i \{H_i\} \approx \{H_{i+1}\}$

$H_i : pk, m_1[1] \ m_1[i] \ m_0[i+1] \ ... \ m_0[q]$

$H_{i+1} : m_1[i+1] \ m_0[i+2] \ ... \ m_0[q]$

$\{D_1\} = \{pk, Enc_{pk}(m_0[i + 1])\}$

$\{D_2\} = \{pk, Enc_{pk}(m_1[i + 1])\}$

Same proof as Claim 1

Intuition (False): By transitivity $\{H_0\} \approx \{H_q\}$

Formally prove by contraposition and use Strong Hybrid Lemma.

12-4