1 Recap

In the last class, we continued the discussion of One-Way Functions (OWFs). We started off by proving that hardness of factoring implies the existence of a Strong OWF, i.e.,

Hardness of factoring \Rightarrow Strong OWF

And then we went on to prove Hardness Amplification, i.e.,

Weak OWF \Rightarrow Strong OWF

Corollary Hardness of factoring \Rightarrow Strong OWF

2 Collection of OWFs

Earlier definitions of Strong OWFs and Weak OWFs are elegant and concise. The Strong OWFs have a strong security guarantee, while the Weak OWFs are easy to instantiate from mathematical problems for which hard instances come from special domains and ranges, like factoring. Such a definition is very useful for complexity-theoretic crypto. However, it tends not to be as appropriate for the kinds of hard functions that we use in real-life crypto. In this class, we look at combining these features of Strong OWFs and Weak OWFs, to provide for a more flexible definition, i.e.,

1. Allow arbitrary domains and ranges
2. Consider not a single function, but a collection of functions

Definition 1 Collection of OWFs is a family $F = \{f_i: D_i \rightarrow R_i\}$ for $i \in I$ such that the following conditions hold:

1. Easy to sample a function from F:
 \exists PPT Gen: Gen(1^n) \rightarrow $i \in I$

2. Easy to sample from the domain:
 \exists PPT Sam: $\forall i \in I$, Sam(i)$\rightarrow a$, where a is a random element in D_i

3. Easy to evaluate:
 \exists PPT M, $\forall i$, $\forall x \in D_i$ such that M(i,x) = $f_i(x)$
4. Hard to invert: \(\forall \) nuPPT \(A \), \(\exists \) negligible \(\epsilon(n) \) such that:
\[
P_r[i \leftarrow \text{Gen}(1^n), x \leftarrow D_i, y=f_i(x), x' \leftarrow A(i,y): f_i(x')=y] \leq \epsilon(n)
\]

Observation Any single OWF \(f: D \rightarrow R \) is also a collection of OWFs.
\[
F = \{f_o = f: D \rightarrow R\}_{I=\{0\}}
\]

Examples

1. Hardness of factoring \(\Rightarrow \) Collection of OWFs

 \[
 F = \{f_n(x,y) = x \cdot y \text{ for } x,y \leftarrow \prod_{n \in N} \}, \text{ Domain, } D_n = \prod_{n}^2
 \]
 (Domain looks complex)

2. Hardness of factoring \(\Rightarrow \) Collection of OWFs

 \[
 F = \{g_n(\vec{x},\vec{y}) = x_1y_1, ..., x_my_m \text{ for } x_iy_i \leftarrow \{0,1\}^n, m=4n^3\}_{n \in N}
 \]
 (Better domain but \(g_n \) is inefficient)

3. **RSA One-Way Permutations (OWPs)**
 - Nicer domain compared to 1
 - More efficient compared to 2
 - Widely used in practice

3 Recap of Basic Number Theory

Modular Arithmetic

Given integers \(a \) and \(N \).

Theorem 1 \(\forall \) \(a,N \in \mathbb{Z} \)

\(\exists \) unique \(k, 0 \leq y < N \) such that: \(a = kN + y \)
\[
y = a \mod N, k = \left\lfloor \frac{a}{N} \right\rfloor
\]

Modular Addition/Multiplication

\[
(a + b) \mod N = ((a \mod N) + (b \mod N)) \mod N
\]
\[
(a * b) \mod N = ((a \mod N) * (b \mod N)) \mod N
\]

Groups

\(G \) is a set of elements with an operation \(\oplus: G \times G \rightarrow G \). Then:
1. **Closure**: $\forall a,b \in G, a \oplus b \in G$

2. **Identity**: $i \in G, \forall a \in G, a \oplus i = i \oplus a = a$

3. **Associativity**: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

4. **Inverse**: $\forall a \in G, \exists a^{-1} = b \in G$, such that:

 $a \oplus b = b \oplus a = i$

Example 1: $(\mathbb{Z}, +)$ is a group because:

1. **Closure**: Addition of two integers will always be an integer.

2. **Identity**: Identity = 0. Adding 0 to any integer a will give the same integer a.

3. **Associativity**: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

4. **Inverse**: $\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z}$, such that:

 $a + (-a) = i = 0$

Example 2: (\mathbb{Z}, \times) is not a group because:

The inverse condition will be violated for integers.

Inverse: $\forall a \in \mathbb{Z}, \not\exists \frac{1}{a} \in \mathbb{Z}$.

Additive Modular Groups

$\mathbb{Z}_N = 0, 1, \ldots, N-1$

Operation: $+ \mod N$

Identity: $i=0$

Inverse: $\forall a \in \mathbb{Z}_N, \exists b \in \mathbb{Z}_N$, such that:

$(a + b) \mod N = 0$, where $b = a^{-1} = N - a$

Multiplicative Modular Groups

$(\mathbb{Z}_N^*, \ast \mod N)$, where $\mathbb{Z}_N^* = \{ a \mid 0 \leq a < N, \gcd(a, N) = 1 \}$

Theorem 2 $\forall a, N$, a has an inverse under $(\ast \mod N) \iff \gcd(a, N) = 1$

Proof. (\Rightarrow direction)

$\exists b$ such that $b.a \mod N = 1$

$\exists k$ such that $b.a = kN + 1$

To prove: $\gcd(a, N) = 1$

Proof by Contraposition
Let \(\gcd(a,N) = c \neq 1 \)
\[\Rightarrow a = k_1c, N = k_2c \]
\[\Rightarrow b.a + kN = Kc \text{ (some multiple of c)} \Rightarrow b.a + kN \neq 1, \text{ which violates our initial assumption. Thus, } \gcd(a,N) = 1 \]

\((\Leftarrow \text{ direction})\]
if \(\gcd(a,N)=1 \) \(\Rightarrow \exists b, k \) such that \(b.a + kN = 1 \) (multiples of \(\gcd(a,N) \))

Theorem 3 Euclid Algorithm

\(\forall a, b \ \text{Euclid}(a,b) \rightarrow x, y \) such that:

\[x.a + y.B = \gcd(a,b) \]

Proof. Given: \(a > b > 0 \).

Euclid \((a,b)\):

if (base case)

\[a \mod b = 0 \quad // x.a+y.b = b, \ i.e., \ gcd(a,b)=b \]

return \((x = 0, y = 1)\)

else if \((a \mod b \neq 0) // \gcd(a,b) = \gcd(a \mod b, b)\)

Euclid\((b,a \mod b) \rightarrow x, y\)

\[// x.b + y.(a \mod b) = \gcd(a,b) = x.b + y.(a - \left\lfloor \frac{a}{b} \right\rfloor) * b \]

return \((y, x - \left\lfloor \frac{a}{b} \right\rfloor y)\)

Efficiency Euclid is a polynomial time algorithm meaning, it runs in time:

\[\text{poly}(\log a, \log b) = \text{poly}(\log a) \]

Theorem 4 \((\mathbb{Z}_N^*, \mod N) \text{ is a group}\)

Proof.

a. Closure: \(a, b \in \mathbb{Z}_N^* \rightarrow ab \mod N \)

b. Identity, \(i=1 \)

c. Inverse \(a^{-1} = b \) such that \(ba + kN = 1 \)

Examples of Multiplicative Modular Groups

\[\mathbb{Z}_7^* = \{1,2,3,4,5,6\} \]

\[\mathbb{Z}_{15}^* = \{x: x<15 \text{ and } x \text{ not a multiple of } 3 	ext{ and } 5\} \]

\[\mathbb{Z}_N^* \text{, } N = p.q \text{ where } p \text{ and } q \text{ are primes.} \]

Size of \(\mathbb{Z}_N^* = \phi(N) = |\mathbb{Z}_N^*| \) (Euler’s Totient Function)

\[\phi(p) = p-1 \text{ for } p \text{=prime} \]

\[\phi(N) \text{ for } N = p.q = (p-1)(q-1) \]
Exponentiation in multiplicative group: $* \mod N$
For $e \geq 0$, $a \in \mathbb{Z}_N^*$, $a^e \mod N = (a^*a^*..a^*) \mod N$

Theorem 5 [Euler’s Theorem]
\[\forall a \in \mathbb{Z}_N^*, \ a^{\phi(N)} \mod N = 1. \]

Corollary \[\forall e, \ a^e \mod N = a^{e \mod \phi(N)} \mod N = a^{e \cdot \phi(N)} \mod N \]
\[\therefore a^{\phi(N)} \mod N = 1 \]

Example \[\phi(21) = (3-1)(7-1) = 12 \]
\[6^{1241} \mod 12 = 6.6^{1240} = 6.36^{620} \mod 12 = 0 \]
\[\therefore 2^{6^{1241}} \mod 21 = 2^0 \mod 21 = 1 \]

4 RSA Collection of OWFs

An RSA Collection of OWFs can be informally defined as: $(N,e) : f_{N,e}(x) = x^e \mod N$.

Hardness of RSA Given a random element $y \in \mathbb{Z}_N^*$, it is hard to find x^e for randomly chosen special N and special e.

special $N \Rightarrow$ Product of primes p and q
special $e \Rightarrow \{ e \in \mathbb{Z}_{\phi(N)} \text{ and } \gcd(e,\phi(N)) = 1 \}$, where $\phi(N) = |\mathbb{Z}_N^*| = (p-1)(q-1)$

Assumption for RSA
\[\forall \text{nFA } A, \exists \text{ negligible } \varepsilon(n) \text{ such that:} \]
\[P_r [p,q \leftarrow \prod_n, \ N=p.q, \ e \leftarrow \mathbb{Z}_{\phi(N)}^*, \ y \leftarrow \mathbb{Z}_{\phi(N)}^*, \ x' \leftarrow A(N,e,y): (x')^e \mod N = y \leq \varepsilon(n) \]

This assumption motivates the following definition for RSA Collection:

Definition 2 [RSA Collection]
\[\mathcal{F}_{RSA} = \{ f_{N,e} = x^e \mod N \}_{N,e \in I} \]
where \[I = \{ (N,e): N=p.q \in \prod_n, \ e \in \mathbb{Z}_{\phi(N)}^* \} \]
Domain, \[D_{N,e} = \{ x \mid x \in \mathbb{Z}_N^* \} \]
Range, \[R_{N,e} = \mathbb{Z}_N^* \]

Theorem 6 RSA collection is a collection of OWF.

1. Easy to sample a function:
 - Gen(1^n): $p,q \leftarrow \prod_n, \ N = p.q, \ \phi(N) = (p-1)(q-1)$
 $e \leftarrow \mathbb{Z}_{\phi(N)}^*$
2. Easy to sample from domain of $f_{N,e}$:
 Domain = \mathbb{Z}_N^*

3. Easy to compute: $f_{N,e} = x^e \mod N$

4. Hard to invert:
 $\forall A, \exists \varepsilon(n)$ such that:
 $Pr[(N,e) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_N^*, y = f_{N,e}(x) = x^e \mod N,$
 $x' \leftarrow A((N,e),y): (x')^e \mod N = y] \leq \varepsilon(n)$
 The distribution given by this function and the one by RSA assumption are the same.

Theorem 7 $\forall f_{N,e} \in \mathbb{F}_{RSA}, f_{N,e}$ is a permutation.

Proof. $\forall y \in \mathbb{Z}_N^*, \exists x, f_{N,e}(x) = y$, i.e., $x^e \mod N = y$

Given y, demonstrate the existence of x

e $\in \mathbb{Z}_N^*$

\Rightarrow e is co-prime with $\phi(N)$

$\Rightarrow \exists d = e^{-1}$ under $\ast \mod \phi(N)$

Let's consider $x = y^d \mod N$

$x^e \mod N = y \Rightarrow (y^d)^e \mod N = y^{de \mod \phi(N)} \mod N \cdot d = e^{-1}, y' = y$