Homework 2 (40 + 6 points)
Due on 11:59pm Nov. 20th.
Solution must be typed, preferably using LaTeX.
It can be submitted via email to rachel.lin@cs.ucsb.edu or in class.
You can collaborate with one other student in class. Please acknowledge your collaborator and all public resources that you use.

Part 1 — Computational Indistinguishability (6 points)

Task (a) — Properties of Computational Indistinguishability (6 points)

Let \(\{X_n\}, \{Y_n\} \) and \(\{Z_n\} \) be distribution ensembles satisfying the following: (1) for every \(n \in \mathbb{N} \), distributions \(X_n, Y_n \) and \(Z_n \) are over domain \(\{0, 1\}^n \) and are efficiently samplable, and (2) \(\{X_n\} \approx \{Y_n\} \) and \(\{Y_n\} \approx \{Z_n\} \), where “\(\approx \)” denotes computational indistinguishability.

Decide whether the following pairs of distribution ensembles are computationally indistinguishable or not.

(i) \(\{X_n \oplus 1^n\} \) and \(\{Y_n \oplus 1^n\} \).

Here \(\oplus \) is the XOR operation and \(1^n \) is the \(n \)-bit all 1 string.

(ii) \(\{X_n||Y_n\} \) and \(\{Y_n||Z_n\} \).

Here, \(A_n||B_n \) is the distribution of \(a||b \), when sampling \(a \) from \(A_n \) and \(b \) from \(B_n \) independently.

(iii) \(\{M(X_n, Y_n)\} \) and \(\{M(Y_n, Z_n)\} \).

Here, \(M \) is a randomized algorithm that on input \((a, b) \), samples a random bit \(i \xleftarrow{} U_1 \), and outputs \(a \) if \(i = 0 \) and \(b \) if \(i = 1 \). Moreover, \(M(A_n, B_n) \) is the distribution of \(M(a, b) \), when \(a \) is sampled from \(A_n \) and \(b \) is sampled from \(B_n \) independently.

For each of the above questions,
- (1 pts) Answer Yes, they are computationally indistinguishable, or No.
- (1 pts) If you answer is Yes, argue why the ensembles are indistinguishable, using the two properties “closure under efficient computation” and “transitivity” introduced in class. If your answer is No, describe a distinguisher that can distinguish the two ensembles.

Part 2 — Pseudo-Random Generators (PRG) (10 points)

Task (a) — The Relation between PRG and OWF (4 points)

Let \(G \) be a length-doubling PRG. Show that \(G \) is a OWF.
- **(2 pts)** Argue informally why this is the case.
- **(2 pts)** Prove this formally.

Task (b) — An alternative definition for PRG.

Given an efficiently-computable function G with $|G(x)| = l(|x|)$, consider the following experiment Exp_{A}^{n} defined for an adversary A and parameter n:

Experiment Exp_{A}^{n}: Proceed in the following three steps.

- Sample a random bit $b \overset{\$}{\leftarrow} U_{1}$.
- If $b = 0$, sample a random $x \overset{\$}{\leftarrow} U_{n}$ and set $y = G(x)$.
 If $b = 1$, sample a random $y \overset{\$}{\leftarrow} U_{l(n)}$.
- Output $b' \overset{\$}{\leftarrow} A(y)$

Say that G is a PRG if for every non-uniform PPT adversaries A, there is a negligible function ε, such that,

$$Pr[b = b'] \leq 1/2 + \varepsilon(n)$$

(i) **(2 pts)** Describe formally the definition of PRG introduced in class.

(ii) **(2 pts)** Argue informally why the above definition is equivalent to the definition introduced in class.

(iii) **(2 pts)** Prove formally this equivalence.

Part 3 — Pseudo-Random Functions (PRF)

Task (a) — Properties of PRF

Call function $F : \{0,1\}^{k} \times \{0,1\}^{n} \rightarrow \{0,1\}^{n}$ a keyed function, and denote $F_{K}(x) = F(K, x)$. Furthermore, assume that F is a PRF.

(i) Consider the keyed function $F' : 0,1^{k} \times \{0,1\}^{2n} \rightarrow \{0,1\}^{n}$ such that

$$F'_{K}(x_1|x_2) = F_{K}(x_1) \oplus F_{K}(x_2)$$

for all $x_1, x_2 \in \{0,1\}^{n}$ and $K \in \{0,1\}^{k}$. Is F' a PRF?

(ii) Consider the keyed function $F'' : 0,1^{2k} \times \{0,1\}^{2n} \rightarrow \{0,1\}^{n}$ such that

$$F''_{K_1||K_2}(x_1|x_2) = F_{K_1}(x_1) \oplus F_{K_2}(x_2)$$

for all $x_1, x_2 \in \{0,1\}^{n}$ and $K_1, K_2 \in \{0,1\}^{k}$. Is F'' a PRF?
(iii) Consider the keyed function $F''' : 0,1^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ such that
\[
F'''_K(x) = F_K(x) \oplus x
\]
for all $x \in \{0,1\}^n$ and $K \in \{0,1\}^k$. Is F''' a PRF?

For each of the above questions,

- (1 pts) Answer Yes or No.

- (1 pts) If you answer is Yes, argue informally why the function is a PRF, given that F is. If your answer is No, describe informally a distinguisher that can distinguish the function from the random function.

Task (b) — From PRF to PRG (6 points)

Let $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a PRF. Construct a PRG G, such that, for all input x, the output length $|G(x)| = 100|x|$ (i.e., on input an n-bit x, the output $y = G(x)$ has $100n$ bits).

(i) (2 pts) Describe your candidate PRG G.

(ii) (2 pts) Argue informally why your candidate function G is a PRG, given that F is a PRF.

(iii) (2 pts) Prove formally the security of your candidate function G, by arguing contra-positive and giving security reduction.

Task (c) — From PRF to PRF (10 points)

Suppose we have constructed a PRF function $F : \{0,1\}^k \times \{0,1\}^m \rightarrow \{0,1\}^l$, where the input and output length $m = m(k)$ and $l = l(k)$ are polynomial in k. Show that now, for any polynomial $l'(k)$, we can construct a PRF F' with the same key and input lengths $m = m(k)$ $l = l(k)$, but with output length $l' = l'(k)$.

(i) (2 pts) Case 1: If $l'(n) \leq l(n)$, how to construct F' from F?

(ii) (2 pts) Case 2: If $l'(n) > l(n)$, how to construct F' from F? You may use PRG in your construction

(iii) (4 pts) Argue informally why your function F' is a PRF.

(iv) (2 pts) Prove formally that your construction F' for Case 2 is a PRF, by arguing contra-positive and giving security reduction.
Part 4 — Secret Key Encryption

Task (a) — Malleability of a Secret Key Encryption

In class, we showed that the following encryption scheme \(\Pi = (\text{Gen}, \text{Enc}, \text{Dec}) \) is multi-message secure. Let \(F : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^l \).

- \(\text{Gen}(1^k) \): Sample a PRF key \(K \leftarrow U_k \). Output \(K \).

- \(\text{Enc}(K, m) \): Sample a random string \(r \leftarrow U_n \), and compute \(z = m \oplus F(K, r) \). Output \(c = (r, z) \).
 (The message space is \(\{0, 1\}^l \).)

- \(\text{Dec}(K, c) \): Parse \(c = (r, z) \). Output \(m = z \oplus F(K, r) \).

Suppose that the goal of the adversary is not to distinguish the ciphertexts of different messages. Instead, given a ciphertext \(c \) of some hidden message \(m \) under some hidden key \(k \), the adversary wants to create another ciphertext \(c' \) that when decrypted using \(k \), yields \(m \oplus 1^n \). Describe an adversarial strategy for achieving this.

This shows that it might be easy to “maul” the ciphertext of one message into a ciphertext of a related message, even if the encryption is multi-message secure.

Part 5 — Bonus Tasks

Task (a) — The insecurity of PRF under leakage.

Construct a keyed function \(F : \{0, 1\}^{k+1} \times \{0, 1\}^n \rightarrow \{0, 1\}^n \) with the following properties: (1) \(F \) is a PRF, (2) however, if the adversary learns the last bit of the secret key of the PRF, then the PRF is no longer secure. You may assume other PRF function to construct \(F \).

This in particular shows that leaking even one bit of the secret key can completely destroy the security of a PRF.

(i) (2 pts) Describe your candidate PRF function \(F \).

(ii) (2 pts) Argue informally why your candidate function is a PRF and describe a distinguisher that given the last bit of the secret key can distinguish \(F \) from a random function.

(iii) (2 pts) Prove formally the security of your candidate function \(F \), by arguing contra-positive and giving security reduction.

Hint: You can email me to get a hint for this question.