
Delegating RAM Computations
with Adaptive Soundness and Privacy

Prabhanjan Ananth∗ Yu-Chi Chen† Kai-Min Chung† Huijia Lin‡

Wei-Kai Lin†

November 7, 2015

Abstract
We consider the problem of delegating RAM computations over persistent databases:

A user wishes to delegate a sequence of computations over a database to a server, where
each compuation may read and modify the database and the modifications persist be-
tween computations. For the efficiency of the server, it is important that computations
are modeled as RAM programs, for their runtime may be sub-linear in the size of the
database.

Two security needs arise in this context: Ensuring Intergrity, by designing means
for the server to compute short proofs that allows the user to efficiently verify the
correctness of the server computation, and privacy, providing means for the user to
hide his private databases and programs from a malicious server. In this work, we
aim to address both security needs, especially in the stringent, adaptive, setting, where
the sequence of RAM computations are (potentially) chosen adaptively by a malicious
server depending on the messages from an honest user.

To this end, we construct the first RAM delegation scheme achieving both adaptive
integrity (a.k.a. soundness) and adaptive privacy, assuming the existence of indistin-
guishability obfuscation for circuits and a variant of the two-to-one somewhere per-
fectly binding hash [Okamoto et al. ASIACRYPT’15] (the latter can be based on the
decisional Diffie-Hellman assumption). Prior works focused either only on adaptive
soundness [Kalai and Paneth, ePrint’15] or on the weaker variant, selective soundness
and privacy [Chen et al. ITCS’16, Canetti and Holmgren ITCS’16].

At a high-level, our result is obtained by applying a generic “security lifting tech-
nique” to the delegation scheme of Chen et al. and its proof of selective soundness and
privacy. The security lifting technique formalizes an abstract framework of selective
security proofs, and generically “lifts” such proofs into proofs of adaptive security. We
believe that this technique can potentially be applied to other cryptographic schemes
and is of independent interest.
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1 Introduction

In the era of cloud computing, it is of growing popularity for users to outsource both their
databases and computations to the cloud. When the databases are large, it is important that
the delegated computations are modeled as RAM programs for efficiency (as computations
maybe sub-linear), and that the state of a database is kept persistently across multiple (se-
quential) computations to support continuous updates to the database. In such a paradigm,
it is imperative to address two security concerns: Integrity – ensuring that the cloud per-
forms the computations correctly, and Privacy – information of users’ private databases and
programs is hidden from the cloud. In this work, we focus on designing RAM delegation
schemes ensuring both integrity and privacy. Consider the following setting:

Private RAM Delegation Initially, to outsource her database DB , a user encodes the
database using a secret key sk, and sends the encoding D̂B to the cloud. Later, whenever
the user wishes to delegate a computation over the database, represented as a RAM program
M , it encodes M using sk, producing an encoded program M̂ . Given D̂B and M̂ , the
cloud runs an evaluation algorithm to obtain an encoded output ŷ, on the way updating the
encoded database; for the user to verify the correctness of the output, the server additionally
generates a proof π. Finally, upon receiving the tuple (ŷ, π), the user verifies the proof and
recovers the output y in the clear. The user can continue to delegate multiple computations.

Adaptive v.s. Selective Security Two “levels” of security exist for delegation schemes:
The, weaker, selective security (referring to integrity and/or privacy) provides guarantees
only in the restricted setting where all delegated computations are chosen statically, whereas,
the, stronger, adaptive security allows them to be chosen adaptively, each (potentially) de-
pending on the encodings of the database and previously chosen programs. Clearly, adaptive
security is more natural and desirable in the context of cloud computing, especially for these
applications where a large database is processed and outsourced once and many computa-
tions over the database are delegated over time.

State-of-the-art Significant progress has been made towards secure RAM delegation. Fol-
lowing the studies on succinct randomized encodings for Turing machines and RAM [BGL+15,
CHJV15,KLW15], Chen et al. [CCC+16] and Canetti and Holmgren [CH16] constructed ef-
ficient RAM delegation schemes that achieve both selective privacy and selective integrity,
assuming indistinguishability obfuscation (iO) and one-way functions. Very recently, Kalai
and Paneth [KP15], building upon the seminal result of [KRR14], constructed the first RAM
delegation scheme with adaptive integrity, based on super-polynomial hardness of the LWE
assumption. However, their solution does not achieve privacy.

Summarizing the state-of-the-art, however, known constructions either focus only on
adaptive integrity, without privacy, or achieve both integrity and privacy, but only the weaker
selective version. This raises the question:

Can we have a RAM delegation scheme with adaptive integrity and privacy?

We answer this question affirmatively, by constructing such a scheme based on iO and DDH.
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1.1 Our Contributions

Our main result is the following theorem.

Theorem 1 (informal). Assuming DDH and the existence of iO for all polynomial size cir-
cuits, there exists an efficient RAM delegation scheme with persistent database, with adaptive
privacy and adaptive soundness (a.k.a. integrity).

The efficiency of our RAM delegation scheme matches that of the selectively secure
scheme of [CCC+16, CH16]: To outsource a database DB of size n, the user encodes the
database in time linear in the database size, n poly(λ) (where λ is the security parameter),
and the server merely stores the encoded database. To delegate the computation of a RAM
program M , with l-bit outputs and time and space complexity T and S, the user encodes
the program in time linear in the output length and polynomial in the program description
size l×poly(|M |, λ), independent of the complexity of the RAM program. At the other side,
the evaluation time and space complexity of the cloud, or server, scales linearly with the
complexity of the RAM programs, that is, T poly(λ) and S poly(λ) respectively. Finally, the
user verifies the proof from the server and recovers the output in the clear in time l×poly(λ).

We remark that the efficiency of our scheme is nearly optimal: The complexity of the
user and the server are essentially the same as that of an insecure scheme (where the user
simply sends the database and programs in the clear, and does not verify the correctness
of the server computation), up to a multiplicative poly(λ) overhead at the server, and a
poly(|M |, λ) overhead at the user. 1 In particular, if the runtime of a delegated RAM
program is sub-linear in the database size, the server evaluation time is also sub-linear,
which is crucial for server efficiency.

Our Ideas in a Nut Shell Our main theorem is established by showing that, in fact,
the selectively secure RAM delegation scheme of Chen et al. [CCC+16] (CCC+), with slight
modification is already secure against adaptive adversaries. Hence, our main technical contri-
bution lies in the proof of adaptive security. In particular, instead of repeating and modifying
the, quite complicated, CCC+ proof, our approach is abstract and general: We characterize a
framework of proofs for showing the indistinguishability of two arbitrary experiments against
selective adversaries that have certain special structure and properties. We then show that
any proof of selective security that fits into the framework—called a “nice” proof—can be
turned into a proof of adaptive security in a generic way. Therefore, by verifying that the
CCC+ scheme (with a slight modification) admits such a “nice” proof, it follows from our
abstract framework that it is also adaptively secure.

Our technique provides a semi-generic approach for “lifting” an indistinguishability proof
for selective adversaries to a proof for adaptive adversaries: Simply verify whether the original
proof satisfy the properties of a “nice” proof and then apply our result in a black-box. We
believe that this technique can potentially be applied to other cryptographic schemes and is
of independent interests.

1We believe that the polynomial dependency on the program description size can be further reduced to
linear dependency, using techniques in the recent work of [AJS15].
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Extension to Parallel RAM (PRAM) Delegation. While the RAM model captures
sublinear time computation on the database, it does not support parallel accesses to the
database. Chen et al. [CCC+16] also presented a delegation scheme for parallel RAM com-
putations, with selective soundness and privacy. By applying our general technique, we
can also lift the selective security of their PRAM delegation scheme to adaptive security,
obtaining an adaptively secure PRAM delegation scheme.

Comparison to Turing Machine Based Delegation Schemes. We note that there are
prior works that generically achieve adaptive security from selective security in the context
of circuits [ABSV15] which was later generalized to the context of Turing machines [AS16].
One of the important techniques underlying these schemes is a refreshing mechanism that
“refreshes” the entire database for every program encoding issued. This means that the
runtime of every program encoding is proportional to the database size. However, applying
this technique in the context of RAMs would destroy the sub-linear time efficiency that we
crucially aim for.

1.2 Technical Overview

We now explain our technique in more detail, starting with the abstract proof framework,
and then application to the CCC+ scheme and proof.

1.2.1 An Abstract Framework

We focus on the general task of proving the indistinguishability of two cryptographic ex-
periments, referred to as the real experiments Real0 and Real1, where each experiment is
defined by a challenger that interacts with an adversary. An unrestricted adaptive adversary
can choose every messages it sends adaptively based on the messages it receives from the
challenger, whereas a selective adversary is restricted to make certain choices statically at the
beginning of its execution. (For example, in the context of delegating RAM computations, a
selective adversary decides on the database DB and all RAM programs Mi’s to be delegated
statically).

A common proof paradigm We start with describing a common proof paradigm for
showing the indistinguishability of two experiments:

• First, construct a sequence of hybrid experiments H0, · · · , H`, that starts from one real
experiment (i.e., H0 = Real0), and gradually morphs through intermediate hybrids Hi’s
into the other (i.e., H` = Real1).

• Second, show that every pair of neighboring hybrids Hi, Hi+1 is indistinguishable via a
straight-line black-box reduction Ri based on some computational assumption, (for in-
stance, the pseudo-randomness of a Puncturable Pseudo-Random Function (PPRF) [BW13,
BGI14,KPTZ13], and the indistinguishability of iO for circuits [BGI+01,GGH+13]).
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Then, by standard hybrid arguments, it follows that the real experiments are indistinguish-
able. This proof paradigm applies to both selective and adaptive adversaries. But when
considering only selective adversaries, the task of constructing the hybrids and reductions
are (potentially) easier for twofold reasons:

1. Since selective adversaries make certain choices statically at the beginning (e.g., the
database DB and RAM programs Mi’s to be delegated), the challenger CH i of an hybrid
experiment Hi may generate or simulate messages to the adversary, depending on this
choice (e.g., in the proof of the CCC+ scheme, some hybrids simulates the encoding of
a RAM program depending on DB and all Mi’s). Such hybrids can syntactically only
interact with selective adversaries.

2. The reduction only need to work with selective adversaries (i.e., “transform” the ad-
vantage of a selective adversary in distinguishable the pair of hybrids into an advantage
in breaking the corresponding assumption).

Therefore, to “lift” a proof for selective adversaries (in the above framework) to one also for
adaptive adversaries, we need to remove the above two restrictions.

Generalized cryptographic experiments With respect to the first restriction, we pro-
pose a generalization of classical (cryptographic) experiments so that experiments can always
be executed with both selective and adaptive adversaries, or even adversaries with more fine-
grained levels of selectivity. Towards this, we differentiate the information that an adversary
“commits” to at the beginning of its execution, from the information that a challenger de-
pends on for generating its messages (such as, DB and Mi’s or nothing).

• The information that an adversary A commits to is written to a special output tape, as
opposed to sending to the challenger (e.g., in the context of RAM delegation, a selective
adversary writes DB and Mi’s, while an adaptive adversary writes nothing).

• The information that a challenger CH depends on is defined by a function G, and upon
A writing α to its special output tape, it receives G(α); this mechanism is part of the
generalized experiment, which A is oblivious to.

The function G could vary from being a null function that always outputs “nothing” (i.e., an
empty string), meaning that the challenger CH is oblivious of the adversary’s choice α, to
the identify function, meaning that CH depends on α entirely, or to a function that outputs
some “partial information” of α, (e.g., consider G that parses α as DB and Mi’s, and outputs
the address in DB that the kth program Mk accesses at its jth step, for some fixed k and j).
As we will see later, experiments depending on such partial information are crucial for our
proof—we call them G-semi-oblivious experiment; experiments in the first and second cases
are also called oblivious or non-oblivious experiments.

Importantly, in generalized experiments, no matter what information (i.e., G) the chal-
lenger depends on, it can always interact with arbitrary adversaries, selective or adaptive.
Thus, when (re)formulating the sequence of hybrids in a proof for selective adversaries as
generalized experiments, we can consider their executions with adaptive adversaries.
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Upgrading the reductions It remains to show that neighboring (generalized) hybrids, Hi

and Hi+1, are indistinguishable to also adaptive adversaries, from which indistinguishability
of real experiments against adaptive adversaries follows. But, we cannot directly apply the
reductions Ri given in the proof for selective adversaries. Instead, we characterize hybrids
and reductions with certain special properties, so that the reductions can be “upgraded”
into ones that work with adaptive adversaries.

Warm-up case Consider first a simple case where two neighboring hybrids Hi and Hi+1

are oblivious (i.e., their function Gi’s are empty). It is well known that if an adversary dis-
tinguishes two hybrids with advantage 2γ, then it wins a “guessing game” with advantage γ
(where after interacting with a randomly chosen challenger, CH i or CH i+1, it guesses cor-
rectly which one it has talked to with probability 1/2 +γ). We show that if the reduction Ri

satisfies the following statistical emulation property, then it works directly with adaptive ad-
versaries. Roughly speaking, Ri leverages adversaries’ advantage by interacting with them in
a straight-line black-box manner, and emulating every message in the “guessing game” sta-
tistically. More precisely, for every (prefix of) transcript ρ = (m1, a1,m2, a2, · · · ) of message
exchanges, the distribution of the next message generated by Ri conditioned on ρ appearing
before (i.e., Ri receiving messages m1,m2, · · · and producing messages a1, a2, · · · ), is statis-
tically close to the distribution of the next message in the “guessing game” conditioned on
the same transcript ρ appearing.

In the literature, security reductions often emulate for an adversary statistically or even
perfectly the game in which it has an advantage. As such, the reductions essentially do
not differentiate selective or adaptive adversaries, and merely leverage their advantages in a
universal way. Hence, we can show that this syntactical property implies that the reduction
also works with adaptive adversaries.

Intermediate case We relax the restriction in the warm-up case and consider hybrids
that depend on some “small” partial information, that is, Hi and Hi+1 are respectively Gi-
and Gi+1-semi-oblivious, with Gi and Gi+1 having polynomial sized ranges. In this case,
we first generalize the above statistical emulation property of Ri to the context of semi-
oblivious experiments, and similarly show that such reductions work directly with a class of
semi-selective adversaries that determines the partial information that Hi and Hi+1 depend
on (i.e., the outputs of Gi and Gi+1) statically.

Our next key observation is that the only difference between semi-selective and adaptive
adversaries is that the latter chooses even the partial information adaptively. However,
since Gi and Gi+1 have only polynomial-sized ranges, the adaptive choice of an adaptive
adversary can be guessed ahead of time with inverse polynomial probabilities. In other
words, every adaptive adversary can be turned into a semi-adaptive adversary, with only a
(multiplicative) polynomial factor decrease in the advantage (by guessing the choice of the
adaptive adversary ahead of time and aborting in the end if the guess is incorrect); then the
reduction Ri can be applied to deduce that the advantage of the adaptive adversary is also
negligible. (Alternatively, we can construct a wrapper reduction running Ri internally, but
works with adaptive adversaries.)

The above technique is, in fact, simply complexity leveraging. However, it is applied to a
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single step in the proof, to “upgrade” the indistinguishability of two neighboring hybrids to
be resilient to adaptive adversaries—we call this technique local complexity leveraging. The
benefit of local complexity leveraging is that the security loss is only related to the “size” of
the information that the hybrids depend on, rather than the “size” of the global information
a selective adversary chooses; yet, by applying it to every step in the proof, it achieves the
same effect as global complexity leveraging.

Technicalities We point out that several technicalities arise when applying the local com-
plexity leveraging. First, each hybrid Hi needs to satisfy an additional property called
Gi-hiding, that is, the challenger’s messages depend on, but computationally hides the out-
put of Gi. Roughly speaking, this is needed to ensure that when executing Hi with a random
output of Gi, the choice made by the adaptive adversary is computationally independent of
the random output, and hence agrees with the random output with inverse polynomial prob-
ability. Second, considering the indistinguishability of neighboring hybrids is only accurate
when the number of hybrids is a constant. Our formal proof considers polynomial number
of hybrids, and proves via contradiction to local a sequences of neighboring hybrids that are
distinguished by an adversary. This also leads to more complication, as the indistinguishabil-
ity of different pairs of hybrids in the sequence may be reduced to different assumptions. We
handle this depending on the fact that there is a constant number of underlying assumptions.

1.2.2 The CCC+ Scheme and Its Nice Proof

CCC+ proposed a selectively secure RAM delegation scheme, satisfying input privacy and
program privacy, in the persistent database setting. It was shown in previous works [AIK10,
GHRW14] that output privacy and soundness follow from input and program privacy using
standard black-box transformations. So we focus our attention on only input and program
privacy.

We now show how CCC+ scheme can be used to instantiate the abstract framework
discussed earlier in this Section. Since the CCC+ scheme is quite involved, we only provide
the relevant details of CCC+ and refer the reader to their paper for a thorough discussion.

There are two main components in CCC+. The first component is storage that maintains
information about the database and the second component is the machine component that
involves executing instructions of the delegated RAM. For every RAM delegated, there
will be a separate machine component. Both the storage and the machine components
are built on heavy machinery. We present below the three main building blocks, that are
imported from Koppula et al. [KLW15]. The components also use additional tools such as
indistinguishability obfuscation, puncturable PRFs and standard encryption schemes.

• Positional Accumulators: This primitive offers a mechanism of producing a short value,
called accumulator, that commits to a large storage. Further, accumulators should also
be updatable - if a small portion of storage changes then only a correspondingly small
change is required to update the accumulator value. While there exist cryptographic
hash functions that already achieve this goal; in the security proof, accumulators also
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allow for programming the parameters with respect to a particular location in such a
way that the accumulator uniquely determines the value at that location. However, to
program the parameters, it is also necessary that we need to know ahead of time all
the changes the storage undergoes, which reflects the evolution of computation, since
its initialization. We emphasize that the programming part occurs only in the security
proof.
Henceforth, we refer to the setting when the accumulator parameters are programmed
to be Enforce-mode and the setting when it is not programmed to be Real-mode.

• Iterators: This tool offers a method of binding the current state of RAM. As in the case
of positional accumulators, iterators exist in two modes, namely, real-mode and enforce-
mode. And also, the enforce mode involves programming the parameters as a function
of the entire computation until that point. However, unlike positional accumulators,
fresh instantiations of iterators can be dynamically chosen once the computation path
is decided. We refer to the relevant technical sections for more details.

• Splittable signatures: A splittable signature scheme allows for splitting of the signing
key into two keys where one key is used to sign only messages in a set S and the other
key is only used to sign messages in S (complement of S). We only consider the case
when the set S contains one message. Correspondingly, the verification key can also be
split into two keys, with one key used to verify signatures on messages in set S and the
other used to verify signatures on messages in S.

We now focus on the security proof of CCC+. We denote the set of hybrids in CCC+ to be
H1, . . . , H`. Correspondingly, we denote the reductions that argue indistinguishability of Hi

and Hi+1 to be Ri. We consider the following two cases depending on the type of neighboring
hybrids Hi and Hi+1:

1. Positional Accumulator is in Real-mode in both Hi and Hii+ 1:- In this
case, the indistinguishability of Hi and Hi+1 is argued either using iterators, splittable
signatures, indistinguishability obfuscation or other standard cryptographic primitives.
In the corresponding reduction Ri, we note that the information Gi written by the
adversary to the special output tape is null. And hence, the reduction Ri corresponds
to the oblivious experiment.

2. Positional Accumulator is in Enforce-mode in either Hi and Hi+1:- Here,
the adversary is supposed to declare all its inputs in the beginning of experiment.
The reason being that in the enforce-mode, the accumulator parameters need to be
programmed. As remarked earlier, programming the parameters is possible only with
the knowledge of the entire computation.

As seen from the above description, the second case is problematic for us since the information
to be declared by the adversary in the beginning of the experiment is too long. Hence, we
need to think of alternate variants to positional accumulators where the enforce-mode can
be implemented without the knowledge of the computation history.
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History-less Accumulators. To this end, we introduce a primitive called history-less
accumulators. As the name is suggestive, in this primitive, programming the parameters
requires only the location being information-theoretically bound to be known ahead of time.
And note that the location can be represented using only logarithmic bits and satisfies the
sizing requirements. That is, the Gi to be declared at the beginning of the experiment is now
short and so the corresponding reduction now corresponds to semi-oblivious experiment. By
plugging this into the CCC+ scheme, we obtain a security proof, where every reduction is
either oblivious or semi-oblivious.

All is left is to construct the primitive of history-less accumulators. To achieve this
goal, we consider the definition of Okamoto et al.’s [OPWW15] two-to-one hash. OPWW
showed how to construct positional accumulators from two-to-one hash. We augment the
definition of OPWW with an additional property and then we show how to adapt OPWW’s
transformation to obtain history-less accumulators. Finally, we adopt the OPWW’s DDH-
based construction of two-to-one hash to also satisfy our additional property.

1.3 Other Related Works

The notion of (one-time, non-succinct) garbled RAM was introduced by the work of Lu
and Ostrovsky [LO13], and since then, a sequence of works [GHL+14, GLOS15] have led
to a black-box construction based on one-way functions, due to Garg, Lu, and Ostro-
vsky [GLO15]. However, the garbled program size here is proportional to the worst-case
time complexity of the RAM program, so this notion does not imply a RAM delegation
scheme. The work of Gentry, Halevi, Raykova, and Wichs [GHRW14] showed how to make
such garbled RAMs reusable based on various notions of obfuscations (with efficiency trade-
offs), and constructed the first RAM delegation schemes in a (weaker) offline/online setting.
Succinct garbled RAM was first studied by [BGL+15, CHJV15], where in their solutions,
the garbled program size depends on the space complexity of the RAM program, but does
not depend on its time complexity. This implies delegation for space-bounded RAM com-
putations. Finally, as mentioned, the works of [CH16, CCC+16] constructed fully succinct
garbled RAM, and [CCC+16] additionally gives the first fully succinct garbled PRAM.

1.4 Organization

We first describe the preliminaries in Section 2. In Section 3, we present our abstract proof
framework. The formal definition of adaptive delegation for RAMs is presented in Section 4.
Towards achieving adaptive RAM delegation, we first present the construction of history-
less accumulators in Section 5. Then we show how to utilize this to construct Adaptive CiO
for RAMs with persistent database in Section 6. In the next step we show how to achieve
adaptive garbled RAM with persistent database in Section 7. In the final step, we give a
generic transformation from adaptive GRAM to adaptive delegation in Section 8.
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2 Preliminaries

We denote the security parameter by λ. We assume familiarity of the reader with standard
cryptographic assumptions.

2.1 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+01],
guarantees that the obfuscation of two circuits are computationally indistinguishable as long
as they both are equivalent circuits, i.e., the output of both the circuits are the same on
every input. Formally,

Definition 1 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm
iO is called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists
of circuits C of the form C : {0, 1}in → {0, 1} with in = in(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}in, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: for all sufficiently large λ ∈ N, for all pairs of
circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}in, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

2.2 Puncturable Pseudorandom Functions

A pseudorandom function family F consisting of functions of the form PRFK(·), that is
defined over input space {0, 1}η(λ), output space {0, 1}χ(λ) and key K in the key space K, is
said to be a secure puncturable PRF family if there exists a PPT algorithm Puncture that
satisfies the following properties:

• Functionality preserved under puncturing. Puncture takes as input a PRF key K,
sampled from K, and an input x ∈ {0, 1}η(λ) and outputs Kx such that for all x′ 6= x,
PRFKx(x

′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1λ) outputs an input x ∈ {0, 1}η(λ), consider an experiment where K
$←− K and

Kx ← Puncture(K, x). Then for all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]
∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from
one-way functions yields puncturable PRFs.
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Theorem 2 ( [GGM86,BW13,BGI14,KPTZ13]). If µ-secure one-way functions2 exist, then
for all polynomials η(λ) and χ(λ), there exists a µ-secure puncturable PRF family that maps
η(λ) bits to χ(λ) bits.

2.3 Tools of [KLW15]

We recall the tools used in the work of Chen et. al. [CCC+16], inherited from Koppula et
al. [KLW15]. We start with the definition of the iterators and splittable signature schemes
in Section 2.3.1 and 2.3.2. Then, we propose a variant of positional accumulators, termed as
history-less accumulators in Section 5.

2.3.1 Iterators

In this subsection, we now describe the notion of cryptographic iterators. As remarked
earlier, iterators essentially consist of states that are updated on the basis of the messages
received. We describe its syntax below.

Syntax Let ` be any polynomial. An iterator PPItr with message space Msgλ = {0, 1}`(λ)

and state space Stλ consists of three algorithms - SetupItr, ItrEnforce and Iterate defined
below.

SetupItr(1λ, T ) The setup algorithm takes as input the security parameter λ (in unary),
and an integer bound T (in binary) on the number of iterations. It outputs public
parameters PPItr and an initial state v0 ∈ Stλ.

ItrEnforce(1λ, T, ~m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security
parameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk),
where each mi ∈ {0, 1}`(λ) and k is some polynomial in λ. It outputs public parameters
PPItr and a state v0 ∈ St.

Iterate(PPItr, vin,m) The iterate algorithm takes as input the public parameters PPItr, a state
vin, and a message m ∈ {0, 1}`(λ). It outputs a state vout ∈ Stλ.

For simplicity of notation, the dependence of ` on λ will not be explicitly mentioned.
Also, for any integer k ≤ T , we will use the notation Iteratek(PPItr, v0, (m1, . . . ,mk)) to
denote Iterate(PPItr, vk−1,mk), where vj = Iterate(PPItr, vj−1,mj) for all 1 ≤ j ≤ k − 1.

Security. Let Itr = {SetupItr, ItrEnforce, Iterate}, be an iterator scheme with message space
Msgλ and state space Stλ. We require the following notions of security.

Definition 2 (Indistinguishability of Setup). An iterator Itr = {SetupItr, ItrEnforce, Iterate}
is said to satisfy indistinguishability of Setup phase if any PPT adversary A’s advantage in
the security game Exp-Setup-Itr(1λ, Itr,A) is at most negligible in λ, where Exp-Setup-Itr
is defined as follows.

2We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that
is sampled from the family, is at most µ(λ).
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Exp-Setup-Itr(1λ, Itr,A)

The adversary A chooses a bound N ∈ Θ(2λ) and sends it to the challenger.

A sends ~m to the challenger, where ~m = (m1, . . . ,mk) ∈ (Msgλ)
k.

The challenger chooses a bit b. If b = 0, the challenger outputs (PPItr, v0)← SetupItr(1λ, T ).
Else, it outputs (PPItr, v0)← ItrEnforce(1λ, T, ~m).

A sends a bit b′.

A wins the security game if b = b′.

Definition 3 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), ~m = (m1, . . . ,mk) ∈ (Msgλ)
k.

Let (PPItr, v0) ← ItrEnforce(1λ, T, ~m) and vj = Iterate(PPItr, vj−1,mj) for all j ∈ [k]. Then,
Itr = {SetupItr, ItrEnforce, Iterate} is said to be enforcing if

vk = Iterate(PPItr, v
′,m′)⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.

2.3.2 Splittable Signatures

We describe the syntax of the splittable signatures scheme below.

Syntax A splittable signature scheme SplScheme for message space Msg consists of the
following algorithms:

SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input the security
parameter λ and outputs a signing key SK, a verification key VK and reject-verification
key VKrej.

SignSpl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a
signing key SK and a message m ∈ Msg. It outputs a signature σ.

VerSpl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input
a verification key VK, signature σ and a message m. It outputs either 0 or 1.

SplitSpl(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK
and a message m∗ ∈ Msg. It outputs a signature σone = SignSpl(SK,m∗), a one-message
verification key VKone, an all-but-one signing key SKabo and an all-but-one verification
key VKabo.

SignSplAbo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input
an all-but-one signing key SKabo and a message m, and outputs a signature σ.

Correctness Let m∗ ∈ Msg be any message. Let (SK,VK,VKrej) ← SetupSpl(1λ) and
(σone,VKone, SKabo,VKabo) ← SplitSpl(SK,m∗). Then, we require the following correctness
properties:

1. For all m ∈ Msg, VerSpl(VK,m, SignSpl(SK,m)) = 1.

2. For all m ∈ Msg,m 6= m∗, SignSpl(SK,m) = SignSplAbo(SKabo,m).
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3. For all σ, VerSpl(VKone,m
∗, σ) = VerSpl(VK,m∗, σ).

4. For all m 6= m∗ and σ, VerSpl(VK,m, σ) = VerSpl(VKabo,m, σ).

5. For all m 6= m∗ and σ, VerSpl(VKone,m, σ) = 0.

6. For all σ, VerSpl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈ Msg, VerSpl(VKrej,m, σ) = 0.

Security. We will now define the security notions for splittable signature schemes. Each
security notion is defined in terms of a security game between a challenger and an adversary
A.

Definition 4 (VKrej indistinguishability). A splittable signature scheme Spl is said to be
VKrej indistinguishable if any PPT adversary A has negligible advantage in the following
security game:

Exp-VKrej(1
λ, Spl,A)

The challenger computes (SK,VK,VKrej) ← SetupSpl. It chooses a bit b ∈ {0, 1}. If
b = 0, the challenger sends VK to A. Else, it sends VKrej to A.

A sends a bit b′.

A wins if b = b′.

Definition 5 (VKone indistinguishability). A splittable signature scheme Spl is said to be
VKone indistinguishable if any PPT adversary A has negligible advantage in the following
security game:

Exp-VKone(1
λ, Spl,A)

A sends a message m∗Mλ.

The challenger computes (SK,VK,VKrej)← SetupSpl, and computes (σone,VKone,
SKabo,VKabo) ← SignSpl(SK,m∗). It chooses a bit b ∈ {0, 1}. If b = 0, the challenger
sends (σone,VKone) to A. Else, it sends (σone,VK) to A.

A sends a bit b′.

A wins if b = b′.

Definition 6 (VKabo indistinguishability). A splittable signature scheme Spl is said to be
VKabo indistinguishable if any PPT adversary A has negligible advantage in the following
security game:

Exp-VKabo(1λ, Spl,A)

A sends a message m∗ ∈Mλ.

The challenger computes (SK,VK,VKrej)← SetupSpl, and computes (σone,VKone,
SKabo,VKabo) ← SignSpl(SK,m∗). It chooses a bit b ∈ {0, 1}. If b = 0, the challenger
sends (SKabo,VKabo) to A. Else, it sends (SKabo,VK) to A.

A sends a bit b′.

A wins if b = b′.
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Definition 7 (Splitting indistinguishability). A splittable signature scheme Spl is said to be
splitting indistinguishable if any PPT adversary A has negligible advantage in the following
security game:

Exp-VKabo(1λ, Spl,A)

A sends a message m∗ ∈Mλ.

The challenger computes (SK,VK,VKrej)← SetupSpl(1λ), (SK′,VK′,VK′rej)← SetupSpl(1λ),
and computes (σone,VKone, SKabo,VKabo)← SignSpl(SK,m∗), (σ′one,VK

′
one, SK

′
abo,VK

′
abo)←

SignSpl(SK′,m∗). It chooses a bit b ∈ {0, 1}. If b = 0, the challenger sends (σone,VKone, SKabo,VKabo)
to A. Else, it sends (σ′one,VK

′
one, SKabo,VKabo) to A.

A sends a bit b′.

A wins if b = b′.

2.4 RAM Computation

A single-program RAM computation Π is specified by a program P and an initial memory
mem0. The evaluator prepares the initial state st0 and mem0, and converts P to a stateful
algorithm F . At each time t, F is executed with the state stin provided by the previous time
step and a read ainA←M from the memory as input, and outputs a new state stout for the next step
and a memory access command aoutM←A. Formally, it is written as (stout, aoutM←A)← F (stin, ainA←M)
where an access denoted by a = (I, b) includes a location and a value. In the following
context, we sometimes interchangeably use program P or stateful algorithm F to denote the
same RAM program.

Let us consider the persistent database setting. A multiple-program RAM computation
is specified by a sequence of programs {Pi}li=1 and an initial memory mem0,0. As above, the
evaluator prepares initial state and memory, converts each Pi to the stateful algorithm Fi,
and then runs these algorithms with intended order. In particular, each Fi at the beginning
will use the current memory left by the termination of Fi−1.

3 Abstract Proof

In this section, we present an abstract framework of proofs for showing the indistinguisha-
bility of two cryptographic experiments agaisnt selective adversaries, and show how to use a
proofs in this framework to show indistinguishability against even adaptive adversaries.

Notations We denote a non-uniform interactive (Turing) machine as a family of Turning
machines M = {Mλ}, one per first input length λ ∈ N (with the non-uniform advice
hardwired in). The run time ofM is measured with respect to λ. We use the convention that
ensembles are denoted using capital letters A,B, · · · in calligraphic typeface, while elements
in the ensembles are denoted using the same capital letter in standard math font A,B, · · · .
For any two interactive Turing machines A and B, we write A↔B as the compound machine
that on input x internally runs the interaction between A and B with common input x
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and outputs what A outputs in the end. Similarly, for two non-uniform interactive Turing
machines A and B, we write A↔B to denote the family of machines {Aλ↔Bλ}.

For two probability distributions D1 and D2 with the same support S, we denote by

∆(D1,D2) the statistical distance between then, defined as ∆(D1,D2) = 1/2Σs∈S|Pr[s′
$←

D1 : s′ = s]− Pr[s′
$← D2 : s′ = s]|.

3.1 Cryptographic Experiments and Games

We define standard cryptographic experiments and games between two parties, a challenger
CH and an adversary A. The challenger defines the procedure and output of the experiment
(or game), whereas the adversary can be any probabilistic interactive machine.

Definition 8 (Canonical Experiments). A canonical experiment between two probabilistic
interactive machines, the challenger CH and the adversary A, with security parameter λ ∈ N,
denoted as Exp(λ,CH , A), has the following form:

• CH and A receive common input 1λ, and interact with each other.

• After the interaction, A writes an output γ on its output tape. In case A aborts before
writing to its output tape, its output is set to ⊥.

• CH additionally receives the output of A (receiving ⊥ if A aborts), and outputs a bit b
indicating accept or reject. (CH never aborts.)

We say A wins whenever CH outputs 1 in the above experiment.
A canonical game (CH , τ) has additionally a threshold τ ∈ [0, 1). We say A has advantage

γ if A wins in with probability τ + γ in Exp(λ,CH , A).

For machine ? ∈ {CH , A}, we denote by Out?(λ,CH , A) and View?(λ, (CH , A) the ran-
dom variables describing the output and view of machine ? in Exp(λ,CH , A).

Definition 9 (Cryptographic Experiments and Games). A cryptographic experiment is de-
fined by an ensemble of PPT challengers CH = {CH λ}. And a cryptographic game (CH, τ)
has additionally a threshold τ ∈ [0, 1). We say that a non-uniform adversary A = {Aλ}
wins the cryptographic game with advantage Advt(?), if for every λ ∈ N, its advantage in
Exp(λ,CH λ, Aλ) is τ + Advt(λ).

Definition 10 (Intractability Assumptions). An intractiablity assumption (CH, τ) is the
same as a cryptographic game, but with potentially unbounded challengers. It states that
the advantage of every non-uniform PPT adversary A is negligible.

For most cryptographic primitives, the security of an implementation of it can be modeled
as an intractability assumption. For instance, in the security game of a puncturable PRF,
the challenger upon receiving an input i from the adversary, sends back a key K−i punctured
at input i, together with either a random string or the pseudo-random output of the PRF
on input i, decided by a random coin toss b. The challenger outputs 1 whenever A sends
back b′ = b, and the threshold of the game is 1/2. Here, the challenger is efficient, while for
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some other primitives, the challenger is unbounded. In the security game of an iO scheme
for circuits, the challenger upon receiving two circuits C1 and C2 first checks whether C1 and
C2 are functionally equivalent (using unbounded computation power), and if so, it sends the
adversary the obfuscation of a randomly picked circuit and checks whether the adversary
guesses correctly the obfuscation of which circuit is sent. The threshold is again 1/2.

3.2 Generalized Cryptographic Game

In the literature, experiments (or games) for selective security and adaptive security are
often defined separately: In the former, the challenger requires the adversary to choose
certain information at the beginning of the interaction, whereas in the latter, the challenger
does not require such information.

We generalize stardard cryptographic experiments so that the same experiment can work
with both selective and adaptive adversaries. This is achieve by separating information
necessary for the execution of the challenger and information an adversary chooses statically,
which can be viewed as a property of the adversary. More specifically, we consider adversaries
that have a special output tape, and write information α it chooses statically at the beginning
of the execution on it; and only the necessary information specified by a function, G(α), is
sent to the challenger. This allows executing the same experiment with adversaries capturing
different levels of selectivity/adaptivity.

Definition 11 (Generalized Experiments and Games). A generalized experiment between a
challenger CH and an adversary A with respect to a function G, with security parameter
λ ∈ N, denoted as Exp(λ,CH , G,A), has the following form:

1. The adversary A on input 1λ writes on its special output tape string α at the beginning
of its execution, called the initial choice of A, and then proceeds as a normal probabilistic
interactive machine. (α is set to the empty string ε if A does not write on the special
output tape at the beginning.)

2. Let A[G] denote the adversary that on input 1λ runs A with the same security parameter
internally; upon A writing α on its special output tape, it sends out message m1 = G(α),
and later forwards messages A sends, m2,m3, · · ·

3. The generalized experiment proceeds as a standard experiment between CH and A[G],
Exp(λ,CH , A[G]).

We say that A wins whenever CH outputs 1.
Furthermore, for any function F : {0, 1}∗ → {0, 1}∗, we say that A is F -selective in

Exp(λ,CH , G,A), if it holds with probability 1 that either A aborts or its initial choice α and
messages it sends satisfy that F (α) = F (m2,m3, · · · ). We say that A is adaptive, in the case
that F is a constant function.

Similar to before, we denote by Out?(λ,CH , G,A) and View?(λ,CH , G,A) the random
variables describing the output and view of machine ? ∈ {CH , A} in Exp(λ,CH , G,A). In
this work, we restrict our attention to these function G that are efficiently computable, as
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well as, reversely computable, meaning that given a value y in the domain of G, there is
an efficient procedure that can output an input x such that G(x) = y. Below, we assume
implicitly that functions in a generalized experiment is efficiently and reversely computable.

Definition 12 (Generalized Cryptographic Experiments and F -Selective Adversaries). A
generalized cryptographic experiment is a tuple (CH,G), where CH is an ensemble of PPT
challengers {CH λ} and G is an ensemble of efficiently computable functions {Gλ}. Further-
more, for any an ensemble of functions F = {Fλ} mapping {0, 1}∗ to {0, 1}∗, we say that
a non-uniform adversary A is F-selective in cryptographic experiments (CH,G) if for every
λ ∈ N, Aλ is Fλ-selective in experiment Exp(λ,CH λ, Gλ, Aλ).

Similar to Definition 9, a generalized cryptographic experiment can be extended to a
generalized cryptographic game (CH,G, τ) by adding an additional threshold τ ∈ [0, 1), where
the advantage of any non-uniform probabilistic adversary A is defined identically as before.

Let us consider some examples of classes of adversary with different levels of selectivity.

• In one extreme, a completely selective adversary can choose all messages at the beginning
of the execution and simply replay them later; this corresponds to Fλ being the identity
function.

• Selective security for most cryptographic primitives (e.g., public-key encryption, or
RAM delegation) considers an adverary that chooses certain “challenges messages”
ahead of time (e.g., the pair of strings to be encrypted in the CPA security game, or
the database and sequence of RAMs to be delegated in the security game of a RAM
delegation scheme); this corresponds to a projection function Fλ(ρ) that outputs only
the challenge messages from the transcript ρ.

• Another type of adversaries that we consider later are G-selective adversaries, who com-
mits to the bare minimal information required by CH λ statically, and other adaptively
— we call them semi-adaptive adversaries.

• At the other end of the spectrum are fully adaptive adversaries who do not commit to
any information at the beginning, and choose all messages adaptively, that is, Fλ is a
constant function.

3.3 “Nice” Reductions

Standard straight-line black-box security reduction from a cryptographic game to an in-
tractability assumption is a PPT machine R that interacts simultaneously with an adver-
sary and the challenger of the assumption. The correctness of the reduction requires that
if the adversary wins the game with certain advantage γ, then reduction (together with the
adversary) wins the assumption with some related, potentially smaller, advantage γ′; the
decrease in advantage is often referred to as the security loss. Since our generalized crypto-
graphic games can be viewed as standard cryptographic games with adversaries of the form
A[G] = {Aλ[Gλ]}, the standard notion of reductions extends naturally, by letting the reduc-
tions interact with adversaries of the form A[G]. Recall that X↔Y denotes the compound
machine running X and Y internally and outputting what X outputs. Formally,
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Definition 13 (Reductions). A probabilistic interactive machine R is a (straight-line black-
box) reduction from a generalized game (CH , G, τ) to a (canonical) game (CH ′, τ ′) for se-
curity parameter λ, if it has the following syntax:

• Syntax: On common input 1λ, R interacts with CH ′ and an adversary A[G] simultane-
ously in a straight-line—referred to as “left” and “right” interactions respectively. The
left interaction proceeds identically to the experiment Exp(λ,CH ′, R↔A[G]), and the
right to experiment Exp(λ,CH ′↔R,A[G]).

We say that R is (η, δ)-correct with respect to a family of adversaries C, if

• (η, δ)-Correctness: For every adversary A ∈ C with advantage γ in winning the general-
ized game (CH , G, τ) with security parameter λ, R↔A[G] wins the game (CH, τ ′) with
advantage γ′ = η(γ)− δ(λ) (for the same security parameter).

The above functions η and δ determines the security loss related to applying the reduction
R. η captures how much the advantage of the reduction (together with the adverary) scales
down compared to the advantage of the adversary, whereas, δ captures an additive decrease
depending on the security parameter. We believe that using these two functions, one can
describe the security loss of most (security) reductions, where often η is a polynomial while
δ is negligible.

Definition 14. A (straight-line black-box) reduction from an ensemble of generalized cryp-
tographic game (CH,G, τ) to an intractability assumption (CH′, τ ′) is an ensemble of PPT
reductions R = {Rλ} from game (CH λ, Gλ, τ) to (CH ′λ, τ

′) (for security parameter λ). More-
over, we say that R is correct, if there is a polynomial η and a negligible function δ, such
that, Rλ is (η, δ)-correct for every λ.

Next, we describe a syntactical property of a reduction w.r.t. a function µ, and show
that reductions satisfying this property is automatically (η, δ)-correct for a large class of
adversaries, where η is the identify function, and δ is polynomial in µ. At a high-level,
for any reduction R from (CH , G, τ) to (CH ′, τ), the syntactical property requires that R
(together with the challenger CH of the assumption) generates messages and output that
are statistically close to the messages and output of the challenger CH ′ of the game, at every
step.

More precisely, let ρ = (m1, a1,m2, a2, · · · ,mt, at) denote a transcript of messages and
outputs in the interaction between CH and an adversary (or in the interaction between
CH ′↔R and an adversary) where ~m = m1,m2, · · · ,mt−1 and mt correspond to the messages
and output of the adversary (mt = ⊥ if the adversary aborts) and ~a = a1, a2, · · · , at−1 and at
corresponds to the messages and output of CH (or CH ′↔R). A transcript ρ possibly appears
in an interaction with CH (or CH ′↔R) if when receiving ~m, CH (or CH ′↔R) generates
~a with non-zero probability. The syntactical property requires that for every prefix of a
transcript that possibly appear in both interaction with CH and interaction with CH ′↔R,
the distributions of the next message or output generated by CH and that by CH ′↔R
are statistically close. In fact, for our purpose later, it suffices to consider the prefixes of
transcripts that are G-consistent: A transcript ρ is G-consistent if ~m satisfies that either
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mt = ⊥ or m1 = G(m2,m3, · · · ,mt−1); in other words, ρ could be generated by a G-selective
adversary.

Definition 15 (Nice Reductions). We say that a reduction R from a generalized game
(CH , G, τ) to a (canonical) game (CH ′, τ) (with the same threshold) for security parameter
λ is µ-nice, if it satisfies the following property:

• µ(λ)-statistical emulation for G-consistent transcripts:
For every prefix ρ = (m1, a1,m2, a2, · · · ,m`−1, a`−1,m`) of a G-consistent transcript of
messages that possibly appears in interaction with both CH and CH ′↔R, the following
two distributions are µ(λ)-close:

∆(DCH ′↔R(λ, ρ), DCH (λ, ρ)) ≤ µ(λ)

where DM(λ, ρ) for M = CH ′↔R or CH is the distribution of the next message or
output a` generated by M(1λ) after receiving messages ~m in ρ, and conditioned on
M(1λ) having generated ~a in ρ.

Next, we show that when a reduction is µ-nice, it is also automatically correct for all G-
selective interactive machines, with only a small additive security loss related to the statistical
distance µ and the run-time t of the reduction.

Lemma 1. Every µ-nice reduction R from (CH , G, τ) to (CH ′, τ) for security parameter
λ is (η, δ)-correct for the class of G-selective (potentially unbounded) interactive machines,
where η is the identify function η(γ) = γ, and δ(λ) = t(λ)µ(λ), where t(λ) is an upper bound
on the run-time of R.

Proof of Lemma 1. Let λ be the security parameter under consideration, t = t(λ) and
µ = µ(λ). Fix any G-selective interactive machine A that wins the generalized game
(CH , G, τ) with advantage γ, that is, in experiment Exp(λ,CH , A[G]), the adversary A[G]
makes CH output 1 with probability τ + γ. It is without loss of generality to assume that
A is deterministic: If A is randomized, there must exist a random tape r such that when
using r, A achieves advantage τ + γ. Then we can construct another deterministic machine
A′ with r hardwired in and proceeds as A does using that random tape; clearly, A′ achieves
advantage τ + γ.

Our goal is showing that R when interacting with A[G], breaks the assumption (CH ′, τ ′)
with advantage greater than or equal to γ−tµ. Suppose this is not true, that is, in experiment
Exp(λ,CH ′↔R,A[G]), CH ′↔R outputs 1 with probability less than τ + γ − tµ. We derive
a contradiction below.

Below, for simplicity of notation, we set M0 = CH and M1 = CH ′↔R. The two
experiments under consideration are E0 = Exp(λ∗,M0, A[G]) and E1 = Exp(λ∗,M1, A[G]).
Consider the interaction between Mb and A[G] in experiment Eb. Let Transb,i denote the
distribution of length-i prefix ρ of the transcript of messages and outputs in Eb. If i is even,
ρ = m1, a1, · · · ,mi/2, ai/2; if i is odd, ρ = m1, a1, · · · , a(i−1)/2,m(i−1)/2+1. We assume that for
a transcript of length smaller than i, its length-i prefix is the transcript appended with >
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to length i. Since R runs at most t steps, Transb,t is the distribution of the full transcript in
Eb. Since A is G-selective, every ρ in the support of Transb,t is G-consistent.

We denote by di the statistical distance between Trans0,i and Trans1,i.

di = ∆(Trans0,i, Trans1,i)

Clearly d0 = 0 and di ≤ di+1. Our premise and hypothesis state that the probabilities that
M0 and M1 outputs 1 in E0 and E1 differ by more than tµ, and hence, dt > tµ. Then, there
must be an index i, such that, the gap between the statistical distances di and di+1 is more
than µ, that is, di+1 > di + µ

We first observe that if i is even and the i + 1th message is from A[G], then di+1 = di.
Since A[G] is deterministic, the i + 1th message is determined by the previous i messages,
and thus di+1 ≤ di. Combining with the fact that di ≤ di+1, we have di = di+1. If i is odd
and the i + 1th message is from Mb, we show that by the statistical emulation property of
R, the gap between di and di+1 is no larger than µ, which gives a contradiction. Below, we
prove this fact.

Let Γb be the set of length-i prefix in the support of Transb,i+1 (i.e., the set of length-i
prefix that appear with non-zero probability in Eb), and let Γ be their intersection Γ0 ∩ Γ1

(i.e., the set of length-i prefix that appear with non-zero probability in both E0 and E1).
The statistical distance di can be divided into three parts,

2di+1 = p+ p0 + p1

p = Σρ∈Γ Σa

∣∣Trans0,i+1(ρ||a)− Trans1,i+1(ρ||a)
∣∣

pb = Σρ∈Γb−Γ Σa Transb,i+1(ρ||a)

where Transb,i+1(ρ||a) is the probability that prefix ρ||a (of length (i+ 1)) appears according
to distribution Transb,i+1. The probability pb is exactly the probability that some prefix
ρ ∈ Γb − Γ appear in experiment Eb.

pb = Pr[Some ρ ∈ Γb − Γ appears in Eb]

We can further expand the first term p,

p = Σρ∈Γ Σa

∣∣∣DM0 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E1]

∣∣∣
Where DMb

[λ∗, ρ](a) is the probability that Mb generates a as the next message or output
conditioned on prefix ρ occurring in Eb. By the statistical emulation property of R, for every
prefix ρ of a G-consistent transcript that appears in both E0 and E1, the distance between
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these two conditional distributions DM0 [λ
∗, ρ] and DM1 [λ

∗, ρ] is bounded by µ. Then,

p ≤ Σρ∈Γ Σa

(∣∣∣DM0 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

∣∣∣
+
∣∣∣DM1 [λ

∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E1]

∣∣∣)
We note that the first two lines above correspond to the following:

Σρ∈Γ Σa

∣∣∣DM0 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]− DM1 [λ

∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]
∣∣∣

= Σρ∈Γ Pr[ρ ∈ Γ appears in E0]×
(

Σa

∣∣∣DM0 [λ
∗, ρ](a)− DM1 [λ

∗, ρ](a)
∣∣∣)

≤ Σρ∈Γ Pr[ρ ∈ Γ appears in E0]× 2µ

≤ 2µ

The last two lines above correspond to the following:

q = Σρ∈Γ Σa

∣∣∣DM1 [λ
∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]− DM1 [λ

∗, ρ](a)× Pr[ρ ∈ Γ appears in E1]
∣∣∣

= Σρ∈Γ

∣∣∣Pr[ρ ∈ Γ appears in E0]− Pr[ρ ∈ Γ appears in E1]
∣∣∣× (Σa DM1 [λ

∗, ρ](a)
)

= Σρ∈Γ

∣∣∣Pr[ρ ∈ Γ appears in E0]− Pr[ρ ∈ Γ appears in E1]
∣∣∣

Therefore, p ≤ 2µ+q and 2di+1 ≤ 2µ+p0 +p1 +q. However, note that p0 +p1 +q is bounded
by twice the statistical distance 2di between the distributions of length-i prefixes. Thus, we
get that di+1 ≤ di + µ, which is a contradiction.

3.4 Nice Proof

In this section, we characterize an abstract framework of proofs—called “nice” proofs—for
showing the indistinguishability of two ensembles of (standard) cryptographic experiments
RL0 and RL1. Roughly speaking, a standard indistinguishability proof consists of a se-
quence of hybrid experiments and shows that neighboring hybrids are indistinguishable via
a reduction to a intractability assumption. We say that a proof is “nice” if the hybrid experi-
ments, formalized as generalized cryptographic experiments, and the reductions have certain
special properties. We show in the next section that these special properties allow for “lifting
a nice proof” to prove security against adaptive adversaries. Below, we start with defining
indistinguishability of generalized cryptographic experiments against F -selective adversaries.
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Indistinguishability Against F-Selective Adversaries: Consider two arbitrary en-
sembles of generalized cryptographic experiments (CH0,G0) and (CH1,G1). These experi-
ments can be run with adversaries with different levels of selectivity: For an ensemble F
of efficiently computable functions, let CF denote the class of non-uniform PPT adversaries
A that are F -selective in (CHb,Gb) for both b = 0, 1. Indistinguishability of (CH0,G0) and
(CH1,G1), against (efficient) F -selective adversaries is defined as:

Definition 16 (Indistinguishability against F -selective adversaries). Let F be an ensemble
of efficiently computable functions. We say that two ensembles of generalized cryptographic
experiments (CH0,G0) and (CH1,G1) are indistinguishable to F-selective adversaries, if for
any adversary A in CF , it holds that, for every λ ∈ N, CH b = CH b,λ, A = Aλ, Gb = Gb,λ,

|Pr[OutA(λ,CH 0, G0, A) = 1]− Pr[OutA(λ,CH 1, G1, A) = 1]| ≤ negl(λ)

Moreover, we say that (CH0,G0) and (CH1,G1) are indistinguishable to adaptive adversaries
if they are indistinguishable to F-selective adversaries, where F is a constant function.

It follows from classical argument that the above definition is equivalent to requiring that
no (efficient) F -selective adversaries can win a “guessing” game where the adversary partic-
ipates in one of the two experiments chosen at random and tries to guess which experiment
it is in.

Claim 1. Definition 16 is equivalent to requiring that for any adversary A in CF , its ad-
vantage in the following generalized cryptographic game (D,G0||G1, 1/2) is negligible, where
G0||G1 = {G0,λ||G1,λ} are the concatenations of functions G0,λ and G1,λ, and the chal-
lenger D = {Dλ[CH 0,λ,CH 1,λ]} proceeds as follows: For every security parameter λ ∈ N,
D = Dλ[CH 0,λ,CH 1,λ], Gb = Gb,λ, CH b = CH b,λ, in experiment Exp(λ,D,G0||G1, ?),

• D tosses a random bit b
$← {0, 1}.

• Upon receiving g0||g1 (corresponding to gd = Gd(α) for d = 0, 1 where α is the ini-
tial choice of the adversary), D internally runs challenger CH b by feeding it gb and
forwarding messages to and from CH b.

• If the adversary aborts, D output 0. Otherwise, upon receiving the adversary’s output
bit b′, it output 1 if and only if b = b′.

Abstract Proof Framework of Selective Security Consider two ensembles of stan-
dard cryptographic experiments RL0 and RL1. They are special cases of generalized cryp-
tographic experiments with a function null : {0, 1}∗ → {ε} that always outputs the empty
string, that is, (RL0, null) and (RL1, null); we refer to them as the “real” experiments.

Consider proving the indistinguishability ofRL0, null) and (RL1, null) against F -selective
adversaries. Below we first describe a common high-level structure shared by most proof of
indistinguishability in the literature, and then highlight the special feature of a “nice” proof,
which allows for lifting the proof to work with adaptive adversaries. Below, we use the
notation Xc to denote an ensemble of the form {Xc,λ}, and the notation XI with a function
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I, as the ensemble {XI(λ),λ}; we further slightly abuse the notation to write XI+1 as the
ensemble with function I ′(λ) = I(λ) + 1, and

1. Security based on intractability assumptions: The indistinguishability is based on
a set β of intractability assumptions {(CHκ, τκ)}, where κ ∈ [β].

2. Security via hybrid argument: The proof involves a sequence of polynomial number
`(?) of hybrid experiments. More precisely, for every λ ∈ N, there is a sequence of
`(λ) + 1 hybrid (generalized) experiments (H0,λ, G0,λ), · · · (H`(λ),λ, G`(λ),λ), such that,
the “end” experiments matches the real experiments, that is,

(H0,G0) = ({H0,λ}, {G0,λ}) = (RL0, null)

(H`,G`) = ({H`(λ),λ}, {G`(λ),λ}) = (RL1, null) ,

and an F -selective adversary A in the real experiments {(RLb,Ub)} is also an F -
selective adversary in all ensembles of intermediate hybrids (HI ,GI) = ({HI(λ),λ}, {GI(λ),λ})
for 0 ≤ I(λ) ≤ `(λ). (This usually holds as hybrids have the same interface as the real
experiments when interacting with the adversary.)

3. Indistinguishability of neighboring hybrids via reductions: Neighboring hybrids
are shown indistinguishable to F -selective adversaries via a reduction to one of the
β intractability assumptions. More precisely, for every λ and 0 ≤ i < `(λ), there
is a reduction Ri,λ from the guessing experiment (Di,λ = D[Hi,λ, Hi+1,λ], Gi,λ||Gi+1,λ)
corresponding to distinguishing hybrids Hi,λ, Hi+1,λ, to one of the assumptions CH i,λ =
CH κ,λ for some κ ∈ [β], such that,

• Correctness w.r.t. F -selective adversaries: There is a polynomial η and negligible
function δ, such that, for every i, λ, Ri,λ is (η, δ)-correct for every Fλ-selective
adversary.

Given the above high-level structure, indistinguishability between (RL0, null) and (RL1, null)
against F -selective adversaries follows from standard arguments: Suppose for contradiction
that there is a F -selective adversary A that distinguishes the real experiments with some in-
verse polynomial probability 1/p(λ) for infinitely many λ ∈ N. Then, the adversary A must
distinguish a sequence of intermediate neighboring hybrids, (HI ,GI) and (HI+1,GI+1), for
some 0 ≤ I(λ) < `(λ), with probability 1/q(λ) = 1/p(λ)`(λ) for infinitely many λ. For every
such λ and i = I(λ), by the η, δ-correctness of the reduction Ri,λ, Ri,λ↔Aλ wins challenger
CH i,λ with advantage η(1/q(λ))− δ(λ). Since this happens for infinitely many λ and there
are only a constant number of assumptions, there is an assumption κ ∈ [β], such that, the
ensemble of non-uniform machines RI↔A wins CHκ with advantage η(1/q(λ))− δ(λ) for an
infinitely many λ. Since η is a polynomial and δ is negligible, this gives a contradiction.

The above proof framework considers only F -selective adversaries. Towards our end goal
of showing indistinguishability against adaptive adversaries, we consider “nice” proofs that
follow this framework, but with two additional features.

3’. Indistinguishability to semi-adaptive adversaries: Neighboring hybrids are shown
indistinguishable not only to F -selective adversaries, but also, to semi-adaptive adver-
saries. More precisely, a semi-adaptive adversary distinguishing hybrids Hi,λ and Hi+1,λ
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is a (Gi,λ||Gi+1,λ)-selective adversary in the guessing experiment (Di,λ, Gi,λ||Gi+1,λ). A
“nice” proof show that:

• Correctness w.r.t. semi-adaptive adversaries: There is a polynomial η and negligible
function δ, such that, for every i, λ, Ri,λ is (η, δ)-correct for every (Gi,λ||Gi+1,λ)-
selective adversary.

4. Gi with polynomial-sized ranges: There is a polynomial L, such that, the size of the
range of every Gi,λ function is bounded by L(λ).

5. Hiding to adaptive adversaries Gi: The hybrids in a “nice” proof has the following
additional property: In hybrid (Hi,λ, Gi,λ), the challenger’s messages “hide” the g =
Gi,λ(α) it receives at the beginning (recall α is the initial choice of the adversary),
More precisely, if the challenger receives 0 instead (for simplicity, assume that 0 is in
the range of Gi,λ), the challenger’s messages remain indistinguishable to semi-selective,
that is, Gi,λ-selective adversaries.

• G-Hiding: For any function I, experiments (HI ,GI) and (HI ,0) are indistinguish-
able to GI-selective adversaries, where 0 is the constant zero function.

In summary,

Definition 17 (Nice Indistinguishability Proof). A “nice” proof for the indistinguishability
of two real experiments (RL0, null) and (RL1, null) is one that satisfy properties 1, 2, 3’, 4
and 5 described above.

Recall that Lemma 1 shows that nice reductions are automatically correct for all semi-
adaptive adversaries. Therefore, property 3’ is implied by the following stronger property
3”:

3”. Nice Reductions: The reductions for showing the indistinguishabilty of neighboring
hybrids are “nice”. More precisely,

• Nice Reductions: There is a polynomial t and a negligible function µ, such that,
for every i, λ, the reduction Ri,λ from the guessing experiment (Di,λ, Gi,λ||Gi+1,λ)
to assumption experiment (CH i, τi) runs for at most t(λ) steps and is µ-nice.

By Lemma 1, this implies that for every i, λ, Ri,λ is (η, δ)-correct for the identity
function η and δ(λ) = t(λ)µ(λ), which is negligible.

Therefore,

Claim 2. Every proof for the indistinguishability of two real experiments (RL0, null) and
(RL1, null) satisfying properties 1, 2, 3”, 4 and 5 is a “nice” proof.

Later, we will show that the proof of the selectively secure RAM delegation scheme
of [CCC+16] satisfy these properties and hence is a “nice” proof.

Finally, we remark that a “nice” proof not only applies to F -selective adversaries, but
also to the stronger semi-adaptive adversaries; but, it does not apply to adaptive adversaries.
Nevertheless, in the next section, we show how to use a nice proof to show indistinguishability
against adaptive adversaries in a generic way—we refer to this step as “lifting the nice proof”.
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3.5 Indistinguishability to Adaptive Adversaries

We show that if two ensembles of standard experiments RL0 and RL1 admit a “nice proof”,
then they are automatically indistinguishable to adaptive adversaries.

Theorem 3. A “nice” proof for the indistinguishability of two ensembles of experiments RL0

and RL1 implies that these experiments are indistinguishable against adaptive adversaries.

Proof. For every λ ∈ N, let (H0,λ, G0,λ), · · · (H`(λ),λ, G`(λ),λ) be the sequence of `(λ) + 1
hybrid (generalized) experiments considered in the “nice” proof, and Ri,λ the reduction from
the guessing game (Di,λ = D[Hi,λ, Hi+1,λ], Gi,λ||Gi+1,λ, 1/2) to assumption (CH i,λ, τi,λ) =
(CH κ

λ, τ
κ) for some κ ∈ [β]; Ri,λ is (η, δ)-correct for all Gi,λ||Gi+1,λ-selective adversaries.

Suppose for contradiction that (RL0, null) and (RL1, null) is not indistinguishable to the
class of non-uniform PPT adaptive adversaries. That is, there is a non-uniform PPT adaptive
adversary A = {Aλ}, and a polynomial p, such that for infinitely many λ,

|Pr[OutAλ(λ,Real0,λ, null, Aλ) = 1]− Pr[OutAλ(λ,Real1,λ, null, Aλ) = 1]| ≥ 1/p(λ) .

We derive a contradiction below. For simplicity of notation, we suppress subscription of λ
in the rest of the proof.

For every λ, consider the same sequence of hybrids H0, · · · , H`, for ` = `(λ). But, instead
of consider directly the output of the adaptive adversary A in the hybrid experiment Hi for
0 ≤ i ≤ `, we consider running a wrapper adversary A′Gi in Hi, where A′X for an efficiently
computable and reversely computable function X, on input 1λ, runs A internally as follow:

• When A writes initial choice α on its special output tape, A′X ignores α. Instead, it
samples a random x from the range of function X, and finds an α′ such that X(α′) = x,
and writes α′ on its own special output tape.

• It forwards messages to and from A externally.

• A′X aborts whenever A aborts.

• If A does not abort and outputs bit b, A′X checks whether its initial random guess x
matches the output of function X applied to the transcript of messages ρ that A sends,
x = X(ρ). If it is the case, then A′X outputs b as well. Otherwise, it aborts and writes
⊥ on its special output tape; we denote this event err.

We remark that since A′X aborts whenever its initial guess x does not match the messages
A sends w.r.t. X, A′X is a X-selective adversary. Furthermore if X is the function null, then
A′X would always guess correctly and event err never occurs, in which case, the output of
A′X is identical to that of A.

Given the wrapper adversaries, consider running A′Gi in the experiment (Hi, Gi) and the
probability pi that A′Gi outputs 1 conditioned even err does not occur:

pi = Pr
[
OutA′Gi

(λ,Hi, Gi, A
′
Gi

) = 1 | ¬err
]
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Since (H0, G0) and (H`, G`) are exactly the real experiments (Real0, null) and (Real1, null)
respectively. We have that

p0 = Pr [OutA(λ,Real0, null, A) = 1]

p` = Pr [OutA(λ,Real1, null, A) = 1]

By the contradiction hypothesis, for an infinitely many λ, p0 and p` differ by 1/p(λ). For
every such λ, there is an index 0 ≤ i < `, such that, pi and pi+1 differ by at least 1/p(λ)`(λ).

Towards deriving a contradiction, we want to apply the reduction Ri from the guessing
experiment (Di, Gi||Gi+1, 1/2) to some assumption (CH i, τi). However, the reduction is
only (η, δ)-correct for Gi||Gi+1-selective adversaries. We observe that the distribution of
output of A′Gi in (Hi, Gi) (respectively, A′Gi+1

in (Hi+1, Gi+1)) is identical to that of A′Gi||Gi+1

conditioned on err not occurring (in both experiments), that is,

pi = Pr
[
OutA′

Gi||Gi+1
(λ,Hi, Gi, A

′
Gi||Gi+1

) = 1 | ¬err
]

pi+1 = Pr
[
OutA′

Gi||Gi+1
(λ,Hi+1, Gi, A

′
Gi||Gi+1

) = 1 | ¬err
]

By construction, A′Gi||Gi+1
guesses gi||gi+1 at the beginning of the execution and checks

in the end whether the messages from A matches its guess w.r.t. Gi||Gi+1. In (Hi, Gi),
the challenger does not use gi+1, hence the view of A emulated in A′Gi||Gi+1

is information
theoretically independent of gi+1. Therefore, its probability of outputting 1 conditioned on
both gi and gi+1 guessed correctly is identically to that conditioned on only gi is guessed
correctly, which proves the first equation above. The second equation follows from the same
proof.

Therefore, for infinitely many λ, adversaryA′Gi||Gi+1
distinguishes (Hi, Gi) and (Hi+1, Gi+1)

with probability 1/p(λ)`(λ), conditioned on event err no occurring. Let I be the mapping
from λ to such an index 0 ≤ i < ` (I(λ) maps to 0 when the aforementioned condition does
not hold for this λ). Next we show that

Claim 3. Let I be any function satisfying that 0 ≤ I(λ) < `(λ) for every λ ∈ N. For
every sufficiently large λ ∈ N and i = I(λ), the probabilities that event err does not occur in
experiments Exp(λ,Hi, Gi, A

′
Gi||Gi+1

) and Exp(λ,Hi+1, Gi+1, A
′
Gi||Gi+1

) are at least 1/2(L(λ))2.

Proof. We give proof w.r.t. hybrid Hi. The case w.r.t. hybrid Hi+1 follows syntactically from
the same proof. For every λ ∈ Nat and i = I(λ), in Exp(λ,Hi, Gi, A

′
Gi||Gi+1

), event err occurs
when the strings gi and gi+1 that A′Gi||Gi+1

samples at random from the ranges of Gi and

Gi+1 do not match the transcript ρ of messages that A in A′Gi||Gi+1
sends, that is, Gi(ρ) 6= gi

or Gi+1 6= gi+1. We first argue that the probability that Gi+1 = gi+1 is at least 1/L(λ). This
is because, the execution of the challenger Hi in the experiment is independent of gi+1, and
hence the view of A in A′Gi||Gi+1

is information theoretically independent of gi+1. Therefore,

the probability that the randomly chosen gi+1 matches Gi+1(ρ) is at least 1/L(λ).
Next, we show that the probability that for every sufficiently large λ, the probability

that Gi(ρ) = gi is at least 1/2L(λ). Suppose for contradiction, that there are infinitely many
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λ, such that this probability is less than 1/2L(λ). The G-hiding property of the hybrids
states that the ensembles of experiments (HI ,GI) and (HI ,Z) are indistinguishable to all
GI-selective adversaries, where Z is the ensemble of constant zero function Z(x) = 0 for all
x ∈ {0, 1}∗. Since for every λ, A′Gi||Gi+1

is Gi||Gi+1-selective, and hence also Gi-selective,
the hiding property applies to A′Gi||Gi+1

. Thus, for infinitely many λ, in the experiment

Exp(λ,Hi, Z, A
′
Gi||Gi+1

), the probability that Gi(ρ) 6= gi is less than 1/2L(λ) + negl(λ) <

1/L(λ). However, in this experiment, the execution of the challenger no longer depends on
the guess gi, and hence the view of A in A′Gi||Gi+1

is information theoretically independent of

gi. By the same argument above, the probability gi 6= Gi(ρ) is at least 1/L(λ), which gives
a contradiction.

Finally, since gi and gi+1 are sampled independently, the probability that err does not
occur in experiment Exp(λ,Hi, Z, A

′
Gi||Gi+1

) is thus at least 1/2(L(λ))2.

By construction, whenever err occurs, A′ aborts; therefore,

Pr
[
OutA′

Gi||Gi+1
(λ,Hi, Gi, A

′
Gi||Gi+1

) = 1
]

= Pr
[
OutA′

Gi||Gi+1
(λ,Hi, Gi, A

′
Gi||Gi+1

) | ¬err
]
× Pr

[
¬err in Exp(λ,Hi, Z, A

′
Gi||Gi+1

)
]

≥ pi
2L2(λ)

Similarly, the probability that A′ outputs 1 in Exp(λ,Hi+1, Z, A
′
Gi||Gi+1

) is no smaller than

pi+1/2(L(λ))2.
Therefore, for infinitely many λ, the probabilities that A′ outputs in 1 in the ith and

i+ 1th hybrid experiments differ by at least 1/q(λ) = 1/2p(λ)`(λ)(L(λ))2. For every such λ,
it follows from standard arguments that A′Gi||Gi+1

wins the guessing game (Di, Gi||Gi+1, 1/2)

with advantage 1/q(λ) = 1/2p(λ)`(λ). Since A′Gi||Gi+1
is (Gi||Gi+1)-selective, by the (η, δ)

correctness of reduction Ri, the compound machine Mi = Ri↔A′Gi||Gi+1
[Gi||Gi+1] wins the

assumption game (CH i, τi) with advantage η(1/q(λ)) − δ(λ), which is non-negligible. Fur-
thermore, as there are only a constant number of assumptions, there exists one assumption
κ ∈ [β], such that for infinitely many λ, Mi wins the assumption game (CH κ, τκ) with
non-negligible advantage, which gives a contradiction.

4 Adaptive Delegation for RAM computation

In this section, we introduce the notion of adaptive delegation for RAM computation (DEL).
In a DEL scheme, a client outsources the database encoding and then generates a sequence
of program encodings. The server will evaluate those program encodings with intended order
on the database encoding left over by the previous one. For security, we focus on full privacy
where the server learns nothing about the database, delegated programs, and its outputs.
Simultaneously, DEL is required to provide soundness where the client has to receive the
correct output encoding from each program and current database.
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4.1 Definition

Definition 18 (DEL with Persistent Database). A DEL scheme with persistent database,
consists of algorithms DEL = DEL.{DBDel,PDel,Eval,Ver,Dec}, is described below. Let
sid be the program session identity where 1 ≤ sid ≤ l. We associate DEL with a class of
programs P.

DEL.DBDel(1λ,mem0, S) → (m̃em1, sk): The database delegation algorithm DBDel is a
randomized algorithm which takes as input the security parameter 1λ, database mem0,
and a space bound S. It outputs a garbled database m̃em1 and a secret key sk.

DEL.PDel(1λ, sk, sid, Psid) → P̃sid: The algorithm PDel is a randomized algorithm which
takes as input the security parameter 1λ, the secret key sk, the session ID sid and a
description of a RAM program Psid ∈ P. It outputs a program encoding P̃sid.

DEL.Eval(1λ, T, S, P̃sid, m̃emsid) → (csid, σsid, m̃emsid+1): The evaluating algorithm Eval is
a deterministic algorithm which takes as input the security parameter 1λ, time bound
T and space bound S, a garbled program P̃sid, and the database m̃emsid. It outputs
(csid, σsid, m̃emsid+1) or ⊥, where csid is the encoding of the output ysid, σsid is a proof
of csid, and (ysid,memsid+1) = Psid(memsid).

DEL.Ver(1λ, sk, csid, σsid) → bsid ∈ {0, 1}: The verification algorithm returns bsid = 1 if
σsid is a valid proof for csid, or returns bsid = 0 if not.

DEL.Dec(1λ, sk, csid) → ysid: The decoding algorithm Dec is a deterministic algorithm
which takes as input the security parameter 1λ, secret key sk, output encoding csid. It
outputs ysid by decoding csid with sk.

Correctness. A delegation scheme DEL is said to be correct if both verification and de-
cryption are correct: for all mem0 ∈ {0, 1}poly(λ), 1 ≤ sid ≤ `, Psid ∈ P

Pr[(m̃em1, sk)← DEL.DBDel(1λ,mem0, S); P̃sid ← DEL.PDel(1λ, sk, sid, Psid);

(csid, σsid, m̃emsid+1)← DEL.Eval(1λ, T, S, P̃sid, m̃emsid);

bsid = DEL.Ver(1λ, sk, csid, σsid); ysid = DEL.Dec(1λ, sk, csid);
(y′sid,memsid+1)← Psid(memsid) : (ysid = y′sid ∧ bsid = 1) ∀sid, 1 ≤ sid ≤ l] = 1.

Adaptive Security (full privacy). A delegation scheme DEL = DEL.{DBDel, PDel,Eval,
Ver,Dec} with persistent database is said to be adaptively secure if for all sufficiently large
λ ∈ N, for all total round l ∈ poly(λ), time bound T , space bound S, for every interactive
PPT adversary A, there exists an interactive PPT simulator S such that A’s advantage in
the following security game Exp-Del-Privacy(1λ,DEL,A,S) is at most negligible in λ.

Exp-Del-Privacy(1λ,DEL,A,S)

1. The challenger C chooses a bit b ∈ {0, 1}.
2. A chooses and sends database mem0 to challenger C.
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3. If b = 0, challenger C computes (m̃em1, sk) ← DEL.DBDel(1λ,mem0, S). Otherwise, C
simulates (m̃em1

, sk) ← S(1λ, |mem0|), where |mem0| is the length of mem0. C sends
m̃em1 back to A.

4. For each round sid from 1 to l,

(a) A chooses and sends program Psid to C.

(b) If b = 0, challenger C sends P̃sid ← DEL.PDel(1λ, sk, sid, Psid) to A. Otherwise, C
simulates and sends P̃sid ← S(1λ, sk, sid, 1|Psid|, 1|csid|, T, S) to A.

5. A outputs a bit b′. A wins the security game if b = b′.

We notice that an unrestricted adaptive adversary can adaptively choose RAM programs
Pi depending on the program encodings it receives, whereas a restricted selective adversary
can only make the choice of programs statically at the beginning of the execution.

Adaptive Soundness. A delegation scheme DEL is said to be adaptively sound if for all
sufficiently large λ ∈ N, for all total round l ∈ poly(λ), time bound T , space bound S, there
exists an interactive PPT adversary A, such that the probability of A win in the following
security game Exp-Del-Soundness(1λ,DEL,A) is at most negligible in λ.

Exp-Del-Soundness(1λ,DEL,A)

1. A chooses and sends database mem0 to challenger C.

2. The challenger C computes (m̃em1, sk)← DEL.DBDel(1λ,mem0, S). C sends m̃em1 back
to A.

3. For each round sid from 1 to l,

(a) A chooses and sends program Psid to C.

(b) C sends P̃sid ← DEL.PDel(1λ, sk, sid, Psid) to A.

4. A outputs a triplet (k, c∗k, σ
∗
k). A wins the security game if 1← DEL.Ver(1λ, sk, c∗k, σ∗k)

and c∗k 6= ck for the k-th round.

Efficiency. For all session sid, we require DBDel and PDel runs in time Õ(|mem0|) and
Õ(poly(|Psid|)), and efficient Eval runs in time Õ(t∗sid). In addition, the length of csid, σsid
should depend only on |ysid|, and both Ver and Dec run in time O(poly |ysid|).

4.2 Construction of Adaptive RAM Delegation: Roadmap

Building towards adaptive RAM delegation, we first construct a new primitive, called adap-
tive computation-trace indistinguishability obfuscation (CiO) with persistent database. We
first define this primitive in Section 6. This notion is a strengthening of the notion of selec-
tive CiO, introduced by [CCC+16], defined in CCC+. Then we show that by modifying the
selective CiO scheme of CCC+, we achieve adaptive CiO. A crucial change we make to the
selective CiO scheme is that we replace the tool of positional accumulators with history-less
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accumulators; a notion we introduce in Section 5. Arguing that the modified selective CiO
scheme implies adaptive CiO is quite involved: we first look at the sequence of reductions
used by CCC+ in proving the security of selective CiO and then we cast these reductions
in the abstract framework introduced in Section 3. This helps us in boosting reductions
defined w.r.t semi-adaptive adversaries into reductions defined w.r.t adaptive adversaries.
This would then imply that the modified CCC+ scheme is adaptively secure.

In the next step we consider the concept of adaptive garbled RAM in the persistent
database setting. The definition of this primitive is provided in Section 7. We then show,
in Section 7.2, how to achieve adaptive garbled RAM from adaptive CiO. In the final step,
we give a generic transformation to achieve adaptive RAM delegation from adaptive garbled
RAM in the persistent setting. This is demonstrated in Section 8.

Extension to adaptive PRAM delegation. We adopt the strategy of CCC+ [CCC+16]
to realize the adaptive PRAM delegation with persistent database. We provide a brief
overview as to how to make this extension work. At first, we convert our adaptive CiO for
RAM and branch-and-combine technique of [CCC+16] into the adaptive CiO for PRAM.
Then, we construct our adaptive PRAM garbling from adaptive CiO. Finally, the adap-
tive PRAM delegation is achieved with full privacy and soundness by applying the generic
transformation. In this delegation scheme, the database delegation time (resp., program del-
egation time) depends only on database size (resp., program description size). The server’s
complexity matches the PRAM complexity of the computation up to polynomial factor of
program description size.

5 History-less Accumulators

We introduce the notion of history-less accumulators. We explain later, the main difference
between history-less accumulators and the accumulator scheme of KLW. We then demon-
strate a construction of history-less accumulators based on decisional Diffie-Hellman (DDH)
assumption. This construction, which follows along the footsteps of DDH-based construction
of accumulators of Okamoto et al. [OPWW15], is divided into two main steps:

1. OPWW introduced the notion of two-to-one somewhere statistically binding hash. We
consider a variant of this notion, called a extended two-to-one SPB hash, where SPB
stands for somewhere perfectly binding hash. A two-to-one hash of OPWW is a hash
function that takes two blocks of equal length as input and outputs a value whose length
is slightly larger than that of a single block. The somewhere statistical binding property
states that the hash function can be programmed such that the hash output statistically
determines one of the input blocks. In the extended version, we need a stronger property
that the hash output uniquely determines one of the input blocks. More importantly,
we need this additional property, termed as uniqueness of root: suppose a hash output,
h, uniquely determines the first block, say xA. Let the second block be xB. If there
exists x′B such that the hash output of xA and x′B is also h then for every x′A, we have
that the hash output of (x′A,xB) to be the same as the hash output of (x′A,x

′
B). This
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will come in handy in proving the write-enforcing property of the final accumulators
scheme.

2. In the next step, we show how to go from extended two-to-one SPB hash to history-
less accumulators. This construction is identical to the OPWW transformation from
two-to-one hash to positional accumulators. The only difference is in the analysis –
we show the uniqueness of root property of extended two-to-one SPB hash implies the
write-enforcing property of history-less accumulators.

5.1 Definition

We now formally define the notion of history-less accumulators. The main difference be-
tween the positional accumulators of KLW and history-less accumulators is the following:
in KLW, the “enforcing” parameters take as input the special index which is information-
theoretically bound and also the history of computation till that point. In our case, the
enforcing parameters only take as input the special index. We formally describe the scheme
below.

A history-less accumulator, hAcc = hAcc.{Setup,EnforceRead,EnforceWrite,PrepRead,
PrepWrite, VerifyRead,WriteStore,Update} be an accumulator with message space Mλ for
message space Msgλ consists of the following algorithms.

SetupAcc(1λ, T )→ PPAcc, w0, store0 The setup algorithm takes as input a security parame-
ter λ in unary and an integer T in binary representing the maximum number of values
that can stored. It outputs public parameters PPAcc, an initial accumulator value w0,
and an initial storage value store0.

EnforceRead(1λ, T, INDEX∗)→ PPAcc, w0, store0 The setup enforce read algorithm takes as
input a security parameter λ in unary, an integer T in binary representing the maximum
number of values that can be stored, and an additional INDEX∗ between 0 and T−1. It
outputs public parameters PPAcc, an initial accumulator value w0, and an initial storage
value store0.

EnforceWrite(1λ, T, INDEX∗)→ PPAcc, w0, store0 The setup enforce write algorithm takes as
input a security parameter λ in unary, an integer T in binary representing the maximum
number of values that can be stored, and an INDEX∗ between 0 and T − 1. It outputs
public parameters PPAcc, an initial accumulator value w0, and an initial storage value
store0.

PrepRead(PPAcc, store in, INDEX)→ m,π The prep-read algorithm takes as input the public
parameters PPAcc, a storage value store in, and an index between 0 and T−1. It outputs
a symbol m (that can be ε) and a value π.

PrepWrite(PPAcc, store in, INDEX)→ aux The prep-write algorithm takes as input the pub-
lic parameters PPAcc, a storage value store in, and an index between 0 and T − 1. It
outputs an auxiliary value aux.
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VerifyRead(PPAcc, win,mread, INDEX, π)→ {True, False} The verify-read algorithm takes
as input the public parameters PPAcc, an accumulator value win, a symbol, mread, an
index between 0 and T − 1, and a value π. It outputs True or False.

WriteStore(PPAcc, store in, INDEX,m)→ storeout The write-store algorithm takes in the pub-
lic parameters, a storage value store in, an index between 0 and T − 1, and a symbol m.
It outputs a storage value storeout.

Update(PPAcc, win,mwrite, INDEX, aux)→ wout or Reject The update algorithm takes in
the public parameters PPAcc, an accumulator value win, a symbol mwrite, and index
between 0 and T − 1, and an auxiliary value aux. It outputs an accumulator value wout
or Reject.

Except the algorithms EnforceRead and EnforceWrite, the rest of the algorithms described
above are identical to the corresponding algorithms of the positional accumulator schemes.

Correctness. We consider any sequence (m1, INDEX1), . . . , (mk, INDEXk) of symbols m1,
. . . ,mk and indices INDEX1, . . . , INDEXk each between 0 and T−1. We fix any PPAcc, w0, store0 ←
SetupAcc(1λ, T ). For j from 1 to k, we define storej iteratively as storej := WriteStore(PPAcc,
storej−1, INDEXj,mj). We similarly define auxj and wj iteratively as auxj := PrepWrite(PPAcc,
storej−1, INDEXj) and wj := Update(PPAcc, wj−1,mj, INDEXj, auxj). Note that the algo-
rithms other than SetupAcc are deterministic, so these definitions fix precise values, not
random values (conditioned on the fixed starting values PPAcc, w0, store0).

Security. Let hAcc = hAcc.{Setup,EnforceRead,EnforceWrite,PrepRead,PrepWrite,
VerifyRead,WriteStore,Update} be an accumulator with message space Mλ.

We define the following security notions, which are a natural adaptation of the security
properties in the positional accumulators scheme to the history-less setting.

Definition 19 (Indistinguishability of Read-Setup). A history-less accumulator hAcc is
said to satisfy indistinguishability of Read-Setup phase if any PPT adversary A’s advan-
tage in the security game Exp-Setup-Read(1λ, hAcc,A) at most is negligible in λ, where
Exp-Setup-Read is defined as follows.

Exp-Setup-Read(1λ, hAcc,A)

The adversary A chooses a bound S ∈ Θ(2λ) and sends it to challenger.

A sends an index INDEX∗ ∈ {0, . . . , S − 1}.
The challenger chooses a bit b. If b = 0, the challenger outputs (PPhAcc, w0, store0) ←
hAcc.Setup(1λ, S). Else, it outputs (PPhAcc, w0, store0)← hAcc.EnforceRead(1λ, S,
INDEX∗).

A sends a bit b′.

A wins the security game if b = b′.
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Definition 20 (Indistinguishability of Write-Setup). A history-less accumulator hAcc is
said to satisfy indistinguishability of Write-Setup phase if any PPT adversary A’s advan-
tage in the security game Exp-Setup-Write(1λ, hAcc,A) at most is negligible in λ, where
Exp-Setup-Write is defined as follows.

Exp-Setup-Write(1λ, hAcc,A)

The adversary A chooses a bound S ∈ Θ(2λ) and sends it to challenger.

A sends an index INDEX∗ ∈ {0, . . . , S − 1}.
The challenger chooses a bit b. If b = 0, the challenger outputs (PPhAcc, w0, store0) ←
hAcc.Setup(1λ, S). Else, it outputs (PPhAcc, w0, store0)← hAcc.EnforceWrite(1λ, S,
INDEX∗).

A sends a bit b′.

A wins the security game if b = b′.

Definition 21 (Read-Enforcing). Consider any λ ∈ N, S ∈ Θ(2λ), m1, . . . ,mk ∈ Mλ, any
INDEX1, . . . , INDEXk ∈ {0, . . . , S − 1}, and any INDEX∗ ∈ {0, . . . , S − 1}.

Let (PPhAcc, w0, store0)← hAcc.EnforceRead(1λ, S, INDEX∗).
For all j ∈ [k], we define storej iteratively as storej := WriteStore(PPhAcc, storej−1,

INDEXj,mj).
We similarly define aux j and wj iteratively as aux j := PrepWrite(PPhAcc, storej−1, INDEXj)

and wj := Update(PPhAcc, wj−1,mj, INDEXj, aux j).
Then, hAcc is said to be read-enforcing if VerifyRead(PPhAcc, wk,m, INDEX∗, π) = 1, then

either INDEX∗ 6∈ {INDEX1, . . . , INDEXk} and m = ∅, or m = mi for the largest i ∈ [k]
such that INDEXi = INDEX∗.

Note that this is an information-theoretic property. We are requiring that for all other
symbols m, values of π that would cause VerifyRead to output 1 at INDEX∗ do not exist.

Definition 22 (Write-Enforcing). Consider any λ ∈ N, S ∈ Θ(2λ), m1, . . . ,mk ∈ Mλ,
INDEX1, . . . , INDEXk ∈ {0, . . . , S − 1}.

Let (PPhAcc, w0, store0)← hAcc.EnforceWrite(1λ, S, INDEXk).
For all j ∈ [k], we define storej iteratively as storej := WriteStore(PPhAcc, storej−1,

INDEXj,mj).
We similarly define aux j and wj iteratively as aux j := PrepWrite(PPhAcc, storej−1, INDEXj)

and wj := Update(PPhAcc, wj−1,mj, INDEXj, aux j).
Then, hAcc is said to be write-enforcing if Update(PPhAcc, wk−1,mk, INDEXk, aux ) =

wout 6= reject for any aux , then wout = wk.
Note that this is an information-theoretic property: we are requiring that an aux value

producing an accumulated value other than wk or reject does not exist.

5.2 Extended Two-to-One SPB Hash

We define the notion of extended two-to-one SPB hash below.
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Definition 23 (Extended Two-to-One SPB Hash). A extended two-to-one SPB hash is a
hash function with input-length = 2, block length s and output-length is `(λ, s) = s · (1 +
1/Σ(λ)) + poly(λ) with the associated algorithms described below.

• Hash key generation, hk ← Gen(1λ, 1s, i): It takes as input a security parameter λ,
block length s, an index i ∈ {0, 1} and outputs the hash key hk. We let Σ = {0, 1}s
denote the block alphabet.

• Hashing algorithm,
(
Hhk : {0, 1}∗ → {0, 1}`

)
: A deterministic poly-time algorithm

that takes as input x = (x[0], . . . , x[L− 1]) ∈ Σ2 and outputs the hash value Hhk(x).

We require that extended two-to-one SPB hash satisfies the following properties.

I. Index Hiding: This says that a PPT adversary should not be able to determine which
index was used in the generation of the hash key. Formally,

Definition 24 (Index Hiding). We consider the following game between an attacker A and
a challenger:

• The attacker A(1λ) sends two indices i0, i1 ∈ {0, 1}.
• The challenger chooses a bit b← {0, 1} and sets hk← Gen(1λ, 1s, ib).

• The attacker A gets hk and outputs a bit b′

We require that for any PPT attacker A we have
∣∣Pr[b′ = b] − 1

2

∣∣ ≤ negl(λ) in the above
game.

II. Somewhere Perfectly Binding: This property states that the output of Hhk(x0,x1)
uniquely determines the bth block of input xb, where hk← Gen(1λ, 1s, b).

Definition 25 (Somewhere Perfectly Binding). We say that the hash key hk is somewhere
perfectly binding (SPB) for an index i if there does not exist any values y, u 6= u′, π, π′ such
that Verify(hk, y, i, u, π) = Verify(hk, y, i, u′, π′) = 1. We require that for any parameter s and
any index i ∈ {0, 1}:

Pr[hk is SPB for index i : hk← Gen(1λ, 1s, i)] = 1

III. Uniqueness of root: This property states that if Hhk(x0, x1) = Hhk(x0, x
′
1) then for

every x′0, we have that Hhk(x
′
0, x1) = Hhk(x

′
0, x
′
1), where hk← Gen(1λ, 1s, 0). The case when

the first index is information-theoretically bound, that is hk ← Gen(1λ, 1s, 1), can similarly
be defined.

Definition 26. Suppose hk ← Gen(1λ, 1s, b ∈ {0, 1}). We say that the extended two-to-
one SPB hash satisfies uniqueness of root property if for all x0, x

′
0, x1, x

′
1 ∈ Σ, we have the

following:
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• Case b = 0: Let Hhk(x0, x1) = Hhk(x0, x
′
1). Then for all x∗ ∈ Σ, we have Hhk(x

∗, x1) =
Hhk(x

∗, x′1).

• Case b = 1: Let Hhk(x0, x1) = Hhk(x
′
0, x1). Then for all x∗ ∈ Σ, we have Hhk(x0, x

∗) =
Hhk(x

′
0, x
∗)

Construction of Extended Two-to-One SPB Hash. We adapt the decisional Diffie-
Hellman (DDH)-based construction of Okamoto et al. [OPWW15] to achieve a construction
of Extended Two-to-One SPB Hash. In order to do that, we first present their construction
verbatim below and then we show that it satisfies uniqueness of root property. The properties
of index hiding and SPB will be imported from their result.

We consider a PPT group generator G, that takes as input 1λ, parameter 1t=t(λ) and
outputs a description of group G and the order of the group p ∈ θ(2t+1). We assume that
the decisional Diffie-Hellman assumption holds on G.

Gen(1λ, 1s, b ∈ {0, 1}): Let t = max(λ, |
√
s · c|). Generate (G, p) ← G(1λ, 1t). Choose a

random generator g ∈ G.
Set d = d s

t
e. Choose at random vectors w = (w1, . . . , wd) ∈ Zp, a = (a1, . . . , ad) ∈ Zdp

and b = (b1, . . . , bd) ∈ Zdp. We let Ã ∈ Zd×dp = a⊗w be the tensor product of vectors a and

w, where (a⊗w)ij = ai · wj. Similarly, let B̃ = b⊗w. Finally, let A = Ã+ (1− b) · I and

B = B̃ + b · I, where I ∈ Zd×dp is an identity matrix.
The hash key hk = (ga, gb, gA, gB).

Hhk(xA ∈ Σ = {0, 1}s, xB ∈ Σ = {0, 1}s): We view xA and xB each consisting of d blocks
each of t bits (if this is not the case then we will suitably pad with 0s). That is, xA =
(xA,1, . . . , xA,d) and xB = (xB,1, . . . , xB,d), where xA,j (or xB,j) are represented as integers
and by our setting of parameters these values are upper bounded by p. It then outputs the
value, (

V = gxAa+xBb, Y = gxAA+xBB
)
,

where xAa (resp., xBb) is an inner product of xA and a (resp., xB and b). Similarly, xAA
(resp., xBB) is a row vector obtained as a result of matrix multiplication of row vector xA
and matrix A (resp., B).

The analysis of size overhead (output length), index hiding and the binding properties of the
above scheme can be found in Okamoto et al. [OPWW15]. We prove the uniqueness of root
property below.

Theorem 4. The above scheme satisfies uniqueness of root property.

Proof. Suppose hk← Gen(1λ, 1s, b ∈ {0, 1}). We consider the case when b = 0. The same ar-
gument symmetrically holds when b = 1. Let xA, xB, x

′
B ∈ {0, 1}s be such that Hhk(xA, xB) =

Hhk(xA, x
′
B). We denoteHhk(xA, xB) = (gxAa+xBb, gxAA+xBB) andHhk(xA, x

′
B) = (gxAa+xBb, gxAA+x′BB),

where xA,xB,x
′
B are generated as in the description of the scheme.
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The fact thatHhk(xA, xB) = Hhk(xA, x
′
B) implies gxAa+xBb = gxAa+x′Bb and also, gxAA+xBB =

gxAA+x′BB. From these two equalities, we have xBb = x′Bb and xBB = x′BB.
Now, let x∗ ∈ {0, 1}s. We have,

Hhk(x
∗, xB) = (gx

∗a+xBb, gx
∗A+xBB)

= (gx
∗a+x′Bb, gx

∗A+x′BB)

= Hhk(x
∗, x′B), as desired.

5.3 History-less Accumulators from Extended Two-to-One SPB
Hash

We show how to achieve history-less accumulators from extended two-to-one SPB hash. Our
construction will be identical to Okamoto et al. [OPWW15] transformation of positional
accumulators from two-to-one hash. We sketch the construction at a high level and a formal
description of the construction can be found in their paper3.

We adopt a Merkle-tree based approach of constructing a history-less accumulator. Sup-
pose we want to initialize the accumulator storage tree with the initial memory x ∈ {0, 1}poly(λ).
This tree is defined as follows. We divide x into equal halves, namely, xA and xB. We recur-
sively, build an accumulator storage tree on xA and xB. We denote by w0 and w1 to be the
corresponding root nodes. We now pick a fresh instantiation of the extended two-to-one SPB
hash scheme. Denote the hash key generated from this instantiation to be hk. We define
the hash of (w0, w1), computed using the key hk, to be the root w. Our initial accumulator
value will now be w. Lets say we update a memory element at the location index. Once this
is updated, we re-compute the root of the storage tree. This is done by recursively updating
the root of the left sub-tree (or the right sub-tree) depending on where index lies. Note that
the sub-tree that does not contain memory location at index will not be touched.

In more detail, the update algorithm (Update) takes as input (PPAcc, win,mwrite, index,

aux) and does the following: It parses aux as
(
m,π = (ηL0 , η

L
1 , . . . , η

1
0, η

1
1, win = η0

0)
)

. It then

checks whether (i) For i ∈ {0, . . . , L−1}, ηi0 is the root of (ηi+1
0 , ηi+1

1 ) in the storage tree, (ii)
ηL0 = m at the location INDEX. If either one of the checks do not pass then output ⊥, else
continue. In the next step, update the leaf node ηL0 to be η̃0

L. Then, recursively compute
η̃0
i = Hhk(η̃0

i+1, ηi+1
1 ), for i ∈ {0, . . . , L− 1}. Finally assign wout = η̃0

0.

We argue that the above construction satisfies the definition of history-less accumulators.
The only property we need to argue is write-enforcing property. The rest of the properties,
namely, indistinguishability of read and write setup, (history-less) read-enforcing have proofs
identical to their counterparts in the proof of security of Okamoto et al. [OPWW15].

Theorem 5. The above construction satisfies history-less write-enforcing property.

3Refer Appendix B.1, dated September 7, 2015 of the ePrint version of [OPWW15].
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Proof. Consider any λ ∈ N, S ∈ Θ(2λ), m1, . . . ,mk ∈Mλ, INDEX1, . . . , INDEXk ∈ {0, . . . , S−
1}. Let (PPhAcc, w0, store0) ← hAcc.EnforceWrite(1λ, S, INDEXk). For all j ∈ [k], we
define storej iteratively as storej := WriteStore(PPhAcc, storej−1, INDEXj,mj). We simi-
larly define aux j and wj iteratively as aux j := PrepWrite(PPhAcc, storej−1, INDEXj) and
wj := Update(PPhAcc, wj−1,mj, INDEXj, aux j). Denote the value wout = wk. Denote aux k
by aux . And let aux′ be such that Update(PPhAcc, wk−1,mk, INDEXk, aux ′) = w′. We claim
that if w′ 6= ⊥ then w′ = wout.

Before we prove this claim, we introduce some notation. We denote aux and aux ′ as
follows:

aux =
(
ηL0 , η

L
1 , . . . , η

1
0, η

1
1, wk−1 = η0

0

)
, aux ′ =

(
µL0 , µ

L
1 , . . . , µ

1
0, µ

1
1, wk−1 = µ0

0

)
Since Update does not output ⊥ when both aux and aux ′ are input into it, we can argue
the following: (i) wk−1 = η0

0 = µ0
0, (ii) For i ∈ {0, . . . , L − 1}, ηi0 (resp., µi0) is the root of

(ηi+1
0 , ηi+1

1 ) (resp., (µi+1
0 , µi+1

1 )) in the storage tree, (iii) ηL0 = µL0 = m.
Consider the following lemma. The lemma states that every node along the path of aux ,

corresponding to a prefix of INDEXk, has the same value as its corresponding node in aux ′.
We now state the following lemma.

Lemma 2. Assuming somewhere perfectly binding property of the underlying extended two-
to-one SPB hash scheme, we have ηi0 = µi0 for all i ∈ {1, . . . , L}.

Proof. We prove this recursively, top-down, starting from the root of the storage tree. Recall
that the root of the tree is η0

0 = µ0
0 = wk−1. From the perfect binding property of the

underlying extended two-to-one SPB hash scheme, we have that wk−1 uniquely determines
η1

0 and similarly wk−1 uniquely determines µ1
0. This is only possible if η1

0 = µ1
0. Similarly, we

can show that η1
0 uniquely determines η2

0 and µ2
0, which implies that η2

0 = µ2
0. Proceeding

this way, we get ηi0 = µi0, for all i ∈ {1, . . . , L}.

Now, we recursively define η̃0
i to be root of children η̃0

i+1 and ηi+1
1 , for all i ∈ {0, . . . , L−

1}, where (i) η̃0
L = mk, (ii) η̃0

0 = wout. Similarly, we can define µ̃0
i to be root of children

µ̃0
i+1 and µi+1

1 , for all i ∈ {0, . . . , L− 1}, where (i) µ̃0
L = mk, (ii) µ̃0

0 = w′.

Lemma 3. Assuming uniqueness of root property of the underlying extended two-to-one SPB

hash scheme, we have η̃i0 = µ̃i0.

Proof. From Lemma 2, we have that ηL−1
0 = µL−1

0 and also, ηL0 = µL0 . This means that
Hhk(η

L
0 , η

L
1 ) = Hhk(µ

L
0 , µ

L
1 ), where hk is the hash key used for that particular node. Now,

we have η̃0
L = µ̃0

L = mk, which is the value being updated at location INDEXk. From the
uniqueness of root property, we have that Hhk(η̃0

L, ηL1 ) = Hhk(µ̃0
L, µL1 ). From our previous

notation, this means that η̃0
L−1 = µ̃0

L−1. Proceeding this way up the tree, we get η̃i
0 = µ̃i

0,
for all i ∈ {0, . . . , L}.

A consequence of the above lemma is that the root nodes η̃0
0 and µ̃0

0 are the same. In our
terminology, this means that wout = w′. This completes the proof of the theorem.

37



6 Adaptive CiO for RAM with Persistent Database

In this section, we introduce the primitive, computation-trace indistinguishable obfuscation
CiO with persistent database against adaptive adversaries. We will formally define the
adaptive security, give a construction based on the new notion history-less accumulator, and
then prove its adaptive security using our abstract framework.

6.1 Definition of CiO
Consider an initial memory, and then execute a sequence of programs which work on the
memory content processed and left over by the previous program. Our adaptive CiO is
similar to that selective CiO described in [CCC+16], and it forces the evaluator to evaluate
obfuscated programs as intended to produce the intended computation trace. The sequence
of programs is required to be executed in the intended order. In addition, an adaptive CiO
allows its adversary to choose each program after receiving previous programs or memory
content (compared to a selective adversary must choose its programs and memory content
at the beginning).

Let a multiple-program RAM computation be written as Π = (mem0,0, {Fsid}lsid=1), where
the session identity and total number of programs are denoted by sid and l. For simplicity,
we adopt conventions regarding the construction and timestamp as follows.

1. Denote by (sid, 0) the beginning of session sid.

2. Denote by (sid, i) the time step i of session sid for i 6= 0.

3. Each stateful function Fsid hardwires the program and its short input xsid.

4. Denote by (memsid+1,0, stsid+1,0)← F ∗sid(memsid,0, stsid,0) the iterative evaluation of Fsid on
memory database memsid,0 and CPU state stsid,0 until termination with leftover database
memsid+1,0 and output state stsid+1,0.

Definition 27 (Adaptive CiO with Persistent Database). A computation-trace indistin-
guishability obfuscation scheme with persistent database denoted by CiO = CiO.{DBCompile,
Obf,Eval}, is defined as follows:

Database compilation algorithm (m̃em1,0, s̃t
1,0
, sk) := DBCompile(1λ,mem0,0; ρ): DBCompile()

is a probabilistic algorithm which takes as input the security parameter λ, the database
mem0,0 and some randomness ρ, and returns the complied database, state, and secret

key (m̃em1,0
, s̃t

1,0
, sk) as output.

Program compilation algorithm F̃sid := Obf(1λ, sk, sid, Fsid; ρ
′): Obf() is a probabilistic

algorithm which takes as input the security parameter λ, the secret key sk, the ses-
sion ID sid, the stateful function Fsid and some randomness ρ′, and returns a complied
function F̃sid as output.

Evaluation algorithm conf := Eval(m̃emsid,0
, s̃t

sid,0
, F̃sid): Eval() is a deterministic algorithm

which takes as input (m̃emsid,0
, s̃t

sid,0
, F̃sid), and returns a configuration conf = (m̃emsid+1,0

, s̃t
sid+1,0

)
as output.
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Correctness. For all sid ∈ [l], database mem0,0, Fsid with termination time t∗sid and ran-

domness ρ′, let (m̃em1,0, s̃t
1,0
, sk) := DBCompile(1λ,mem0,0), F̃sid := Obf(1λ, sk, sid, Fsid; ρ

′),

and (m̃emsid+1,0
, s̃t

sid+1,0
) := Eval(m̃emsid,0

, s̃t
sid,0

, F̃sid), it holds that

Project(s̃t
sid+1,0

) = stsid+1,0,

where Project is a simple projecting function.

Selective Security. A CiO construction is said to be selectively computation-trace indis-
tinguishable if for all PPT adversary A, we have |Pr[b = b′] − 1

2
| ≤ negl in the following

game.

Exp-IND-CiO
C chooses a bit b ∈ {0, 1}.
A gives C an initial memory mem0,0 and program pairs {(F 0

i , F
1
i )}li=1. If F 0

i , F
1
i are

computation-trace identical, C computes (m̃em1,0
, s̃t

1,0
, sk) := DBCompile(1λ,mem0,0), and

returns (m̃em1,0
, s̃t

1,0
) and F̃1, ..., F̃l to A where F̃i = Obf(sk, i, F b

i ). If not, C aborts.

A outputs b′. A is said to win if b′ = b.

Adaptive Security. A CiO construction is said to be adaptively computation-trace indis-
tinguishable if for all PPT adversary A, we have |Pr[b = b′] − 1

2
| ≤ negl in the following

game.

Exp-IND-CiO
C chooses a bit b ∈ {0, 1}.
A gives C an initial memory mem0,0. C computes (m̃em1,0

, s̃t
1,0
, sk) := DBCompile(1λ,mem0,0)

and returns (m̃em1,0
, s̃t

1,0
)to A.

At each round i, based on the current m̃emi,0 and previous F̃1, ..., F̃i−1, A adaptively
chooses a new pair of (F 0

i , F
1
i ) to C. If F 0

i , F
1
i are computation-trace identical, C returns

F̃i = Obf(sk, i, F b
i ) to A. If not, C aborts.

A outputs b′. A is said to win if b′ = b.

Efficiency. DBCompile and Obf runs in time Õ(|mem0,0|) and Õ(poly(|Fsid|)), and efficient
Eval runs in time Õ(t∗sid).

6.2 Constructing Adaptive CiO for RAM with Persistent Database

In this section, we construct an adaptive CiO, which is based on indistinguishable obfuscation
scheme iO, puncturable pseudorandom function scheme PRF, iterator scheme Itr, splittable
signature scheme Spl, and history-less accumulator scheme hAcc. Let a stateful algorithm
F denotes a RAM program. Let T be the time bound and S be the space bound of all
programs. The construction of CiO consists of the following three algorithms.
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Database Compilation Algorithm DBCompile(1λ,mem0,0)→ (m̃em1,0
, s̃t

1,0
, sk). It com-

putes the following parameters for the obfuscated computation system:

KT ← PPRF.Setup(1λ)

(PPhAcc, ŵ0, ˆstore0)← hAcc.Setup(S),

where KT is the termination key. Based on mem0,0, this algorithm computes the initial
configuration for the complied computation system as follows.

(Compile storage.) For each j ∈ {1, . . . , |mem0,0|} and xj = mem0,0[j], it computes
iteratively:

πj ← hAcc.PrepWrite(PPhAcc, ˆstorej−1, j)

ŵj ← hAcc.Update(PPhAcc, ŵj−1, j, xj, πj)

ˆstorej ← hAcc.WriteStore(PPhAcc, ˆstorej−1,, j, xj)

Set w0 := ŵ|mem0,0|, and store0 := ˆstore |mem0,0|.

(Sign initial state.) Set sid = 1, st0,0 = init, v0 = ⊥. Compute signature σ0 as follows:

rT ← PRF(KT , sid− 1)

(sk0, vk0, vk0
rej)← Spl.Setup(1λ; rT )

σ0 ← Spl.Sign(sk0, (sid, st0,0, v0, w0))

(Output) Now we can output the initial configuration as

m̃em
1,0

= store0

s̃t
1,0

= ((sid, 0), st0,0, v0, w0, σ0)

sk = (PPhAcc, KT )

Program Compilation Algorithm Obf(1λ, sk, sid, Fsid) → F̃sid. First, it generates fol-
lowing session parameters for program Fsid:

KA ← PPRF.Setup(1λ)

(PPItr, v
0)← Itr.Setup(T )

Second, it parses sk = (PPhAcc, KT ). With parameters T,PPhAcc,PPItr, v
0, KA and termina-

tion key KT , as well as program Fsid, we define the program F̂sid (Algorithm 1) for given

sid ∈ [l], 1 ≤ sid ≤ l. This algorithm Obf then computes an obfuscation of the program F̂sid.

That is, F̃sid ← iO.Gen(F̂sid), and it outputs F̃sid.
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Algorithm 1: F̂sid in CiO for RAM

Input : s̃t
in

= ((s, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0, KA, KT

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and

(sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 If Spl.Verify(vksid−1, (sid, st

in, vin, win), σin) = 0, output reject;
4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1));
8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
9 Set min = (vin, stin, win, I in);

10 If Spl.Verify(vkA,m
in, σin) = 0 output reject;

11 Compute (stout, aoutM←A)← F (stin, ainA←M) where aoutM←A = (Iout, bout);
12 If stout = reject, output reject;

13 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

14 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

15 Compute r′A = PRF(KA, (sid, t));
16 Compute (sk′A, vk

′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A);

17 Set mout = (vout, stout, wout, Iout);
18 Compute σout = Spl.Sign(sk′A,m

out);

19 if stout returns halt for termination then
20 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
21 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

22 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

23 else

24 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;

Evaluation algorithm Eval(m̃emsid,0, s̃t
sid,0

, F̃sid) → (m̃emsid+1,0, s̃t
sid+1,0

). Upon receiving

a compiled database (m̃em
sid,0

, s̃t
sid,0

) and a sequence of obfuscated programs (F̃1, . . . F̃l), the
evaluation algorithm carries out the following for each session sid:

1. Set ãsid,0A←M = ⊥. For t = 1 to T , perform following procedures until F̃sid outputs a halting

state s̃t
sid,t∗

at that halting time t∗:

Compute (s̃t
sid,t

, ãsid,tM←A)← F̃sid(s̃t
sid,t−1

, ãsid,t−1
A←M );

Run (m̃em
sid,t

, ãsid,tA←M) ← ãccess(m̃em
sid,t−1

, ãsid,tM←A), where ãccess is the function for
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memory access command.

2. At time t∗, output (m̃em
sid+1,0

, s̃t
sid+1,0

) = (m̃em
sid,t∗

, s̃t
sid,t∗

).

To fulfill correctness, we simply define the function Project(s̃t
sid+1,0

) as follows: first, parse

s̃t
sid+1,0

as ((sid + 1, 0), stout, vout, wout, σout); second, output stout only.
With the same argument from the selective CiO, it is straightforward to verify the cor-

rectness and efficiency of the above construction. Next, we present a theorem for its security.

Theorem 6. Let iO be a secure indistinguishability obfuscator, PRF be a selectively secure
puncturable PRF, Spl be a secure splittable signature scheme, Itr be a secure iterator scheme,
and hAcc be a secure history-less accumulator scheme. Then CiO is an adaptive computation-
trace indistinguishability obfuscation scheme in RAM model with persistent database.

Proof. In this proof, we follow the abstract proof (Section 3) and Theorem 3 to argue our
CiO construction is adaptively secure. Note that we already have a selective proof to show
our CiO construction is selectively secure since we can use that proof of (selective) secu-
rity in [CCC+16, KLW15] with stronger history-less accumulator. To apply Theorem 3, we
firstly model the selective proof as generalized cryptographic games, reductions, and specific
functions G. Secondly, given the above, we check the selective proof is a “nice” proof which
satisfies all fiveproperties 1, 2, 3”, 4, 5 listed in Claim 2. Finally, it follows by Theorem 3
that experiments Exp-IND-CiO{b = 0} and Exp-IND-CiO{b = 1} of our CiO construction are
indistinguishable against adaptive adversaries.

Even though there is a long sequence of hybrids, cryptographic games (to distinguish ad-
jacent hybrids), and reductions, we use a systematic way to check the selective proof indeed
satisfies all five properties. In general, the ith hybrid can be modeled as an interactive com-
piler/obfuscator Hi that receives Gi(α) as its global information. Let (CH i, Gi||Gi+1, 1/2) be
the generalized cryptographic game to challenge an adversary to distinguish between neigh-
boring hybrids (Hi, Hi+1). Let the interactive machine Ri be the reduction from a game
(CH i, Gi||Gi+1, 1/2) to a falsifiable assumption (CH ′i, τ

′
i) which is one of the assumptions

stated in Theorem 6.
To complete the above well-defined games and reductions with specific functions Gi, we

observe that there are two cases of hybrid Hi in this proof:

• Case 1: Hi takes as input only the prefix message to compute its output for each step.

• Case 2: Hi enforces its accumulator PPhAcc which uses either EnforceRead or EnforceWrite.
PPhAcc is used to produce the compiled database m̃em

0,0
. It is necessary to enforce on an

INDEX∗ specified by (F1, . . . Fsid) on mem at time t, where sid and t are further specified
by Hi. Therefore, INDEX∗ is a global information that depends on (mem, F1, . . . Fsid).

We define function Gi be null in Case 1. However, in Case 2, define Gi(α) := INDEX∗i (α)
where α = (mem, F1, F2, . . . Fl). Note that INDEX∗i (α) is efficiently computable by its defi-
nition. Also, it is reversibly computable, since for any given INDEX∗i (α) in space bound S
we can simply set a program F at session sid and time t to access INDEX∗i (α).
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Remark 1. Let one of neighboring hybrids (Hi, Hi+1) be in the enforcing mode (e.g. Case 2).
Comparing to game (Hi, Hi+1), reduction Ri, and assumption CH ′i in the security proof of
the selective CiO construction, we stress those are slightly modified in our proof of the adap-
tive CiO construction. In particular, the enforcing accumulator can be complete memory-
accessing history or history-less in selective CiO. However, the history-less accumulator is
necessary in our adaptive CiO.

With well-defined generalized games (CH i, Gi||Gi+1, 1/2) and reductions Ri, we check
that they satisfy these properties in Claim 2 step by step, which then states they constitute
a “nice” proof. For simplicity, Gi||Gi+1 is denoted by Ḡi.

1. Security based on falsifiable assumptions. The selective proof is based on: indistin-
guishability of iO, selective security of puncturable PRF, four key indistinguishabilities
of splittable signature, and indistinguishability of iterator. In addition, the new stronger
notion, history-less accumulator, is utilized with its read/write-setup indistinguishabil-
ities.

2. Security via hybrid argument. This property holds, since all hybrids Hi have the
same interface as the real experiments when interacting with the adversary.

3”. Nice reductions. For each pair of CH i and CH ′i↔Ri that both receive Ḡi(α), we need
to check if their output distributions are µ-close for every prefix ρ = (m1, a1,
m2, a2, · · · ,m`−1, a`−1,m`) of a Ḡi-consistent transcript of messages. Fortunately, by
looking into CH i and CH ′i↔Ri and comparing their procedures syntactically, we ob-
serve those procedures are almost identical even though Ri passes its partial procedures
to CH ′i. As a result, ∆(DCH i

(λ, ρ),DCH ′i↔Ri(λ, ρ)) is 0, and Ri is 0-nice by Definition 15.

4. Gi with polynomial-sized ranges. Note that function Gi has only 2 cases for all i,
either null or INDEX∗i (α), which have polynomial-sized range S.

5. Hiding to adaptive adversaries Gi. This property requires (HI ,GI) and (HI ,0) are
indistinguishable to GI-selective adversaries for any function I(λ), where 0 is the con-
stant zero function. Let Hi = {Hi,λ}, Gi = {Ḡi,λ} for large enough λ. We claim Gi is
hiding for all i with any large enough λ.

Proof. For any Gi, there are 2 cases, either null or INDEX∗i (α). In Case 1, (Hi, null)
and (Hi,0) are identical for any adversary since Hi never uses null nor 0. In Case
2, the output Gi(α) is always an index that passed as an input to either EnforceRead
or EnforceWrite, and then (Hi, Gi) and (Hi,0) are indistinguishable to any PPT Gi-
selective adversary by the read/write setup indistinguishability of history-less accumu-
lator (Definition 19, 20).

We define the first layer hybrids Hybi for i ∈ {0, 1}, which are exactly two experiments
Exp-IND-CiO{b = 0} and Exp-IND-CiO{b = 1} defined in the adaptive security of CiO.

Hybi for i ∈ {0, 1}. In this hybrid, the challenger defined by the generalized game outputs

an obfuscation computation m̃em
1,0
, {F̃ i

sid}lsid=1 as Algorithm 2.
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Algorithm 2: F̂ i
sid for i ∈ {0, 1}

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0, KA, KT

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and

(sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 If Spl.Verify(vksid−1, (sid, st

in, vin, win), σin) = 0, output reject;
4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1));
8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
9 Set min = (vin, stin, win, I in);

10 If Spl.Verify(vkA,m
in, σin) = 0 output reject;

11 Compute (stout, aoutM←A)← F i
sid(st

in, ainA←M);
12 If stout = reject, output reject;

13 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

14 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

15 Compute r′A = PRF(KA, (sid, t));
16 Compute (sk′A, vk

′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A);

17 Set mout = (vout, stout, wout, Iout);
18 Compute σout = Spl.Sign(sk′A,m

out);

19 if stout returns halt for termination then
20 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
21 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

22 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

23 else

24 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;
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Let AdvkA be the advantage of Hybk against adversary A. We argue that |Adv0
A−Adv1

A| ≤
negl(λ). To show this, we define the second-layer hybrids Hyb0,0,Hyb0,1,
{Hyb0,2,j,Hyb0,3,j,Hyb0,4,j}lj=1. The order from j to j + 1 is Hyb0,2,j,Hyb0,3,j,Hyb0,4,j,
Hyb0,2,j+1,Hyb0,3,j+1,Hyb0,4,j+1. Let t∗sid < T be the terminating time of both programs
F 0
sid and F 1

sid. For the j-th session, we also define third-layer hybrids Hyb0,2,j,i and Hyb0,2′,j,i

for time i, 0 ≤ i < t∗j .

Hyb0,0. This hybrid is identical to Hyb0 in the first layer.

Hyb0,1. In this hybrid, the challenger outputs obfuscations of {F̂ 0,1
sid }lsid=1 which is similar

to {F̂ 0
sid}lsid=1 except that it has PRF key KB hardwired, accepts both ‘A’ and ‘B’ type

signatures for t < t∗sid, for all sid ∈ [l]. The type of the outgoing signature follows the type
of the incoming signature. Also, if the incoming signature is ‘B’ type and t < t∗sid, then the
program uses F 1

sid to compute the output.

Hyb0,2,j. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets

F̂sid = F̂ 0,1
sid if sid ≥ j. This hybrid is identical to Hyb0,2,j,0 defined below.

Hyb0,2,j,i. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets

F̂sid = F̂ 0,1
sid if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,2,j,i

sid defined in

Algorithm 3. This program is similar to F̂ 0,1
sid except that it accepts ‘B’ type signatures only

for inputs corresponding to i + 1 ≤ t ≤ t∗sid − 1. It also has the correct output message mi

for step i hardwired. For i+ 1 ≤ t ≤ t∗sid − 1, the type of the outgoing signature follows the
type of the incoming signature. At t = i, it outputs an ‘A’ type signature if mout = mi, and
outputs ‘B’ type signature otherwise.

Hyb0,2′,j,i. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets

F̂sid = F̂ 0,1
sid if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,2′,j,i

sid defined

in Algorithm 4. This program is similar to F̂ 0,2,j,i except that it accepts ‘B’ type signatures
only for inputs corresponding to i + 2 ≤ t ≤ t∗sid − 1. It also has the correct input message
mi for step i + 1 hardwired. For i + 2 ≤ t ≤ t∗sid − 1, the type of the outgoing signature
follows the type of the incoming signature. At t = i+ 1, it outputs an ‘A’ type signature if
min = mi, and outputs ‘B’ type signature otherwise.

Hyb0,3,j. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets

F̂sid = F̂ 0,1
sid if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,3,j

sid . This

program is similar to F̂ 0,2′,j,t∗j−1, except that it does not output ‘B’ type signatures.
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Algorithm 3: F̂ 0,2,j,i
sid=j

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0,KA,KT , KB, mi

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and

(sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 If Spl.Verify(vksid−1, (sid, st

in, vin, win), σin) = 0, output reject;
4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1)), rB = PRF(KB, (sid, t− 1));

8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
9 Set min = (vin, stin, win, I in) and α = ‘-’ ;

10 If Spl.Verify(vkA,m
in, σin) = 1 set α = ‘A’ ;

11 If α = ‘-’ and (t > t∗ or t ≤ i ) output reject;
12 If α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 set α = ‘B’ ;
13 If α = ‘-’ output reject;

14 if α = ‘B’ or t ≤ i then
15 Compute (stout, aoutM←A)← F 1(stin, ainA←M)

16 else
17 Compute (stout, aoutM←A)← F 0(stin, ainA←M)

18 If stout = reject, output reject;

19 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

20 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

21 Compute r′A = PRF(KA, (sid, t)), r
′
B = PRF(KB, (sid, t));

22 Compute (sk′A, vk
′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk

′
B, vk

′
B,rej) = Spl.Setup(1λ; r′B);

23 Set mout = (vout, stout, wout, Iout);
24 if t = i and mout = mi then
25 Compute σout = Spl.Sign(sk′A,m

out);

26 else if t = i and mout 6= mi then

27 Compute σout = Spl.Sign(sk′B,m
out);

28 else
29 Compute σout = Spl.Sign(sk′α,m

out);

30 if stout returns halt for termination then
31 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
32 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

33 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

34 else

35 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;
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Hyb0,4,j. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets

F̂sid = F̂ 0,1
sid if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,4,j

sid . This

program is similar to F̂ 0,3,j, except that it outputs reject for all t > t∗j including the case
when the signature is a valid ‘A’ type signature.

In the remaining of this subsection, we only prove Lemma 4 (from Hyb0,2,j,i to Hyb0,2′,j,i).
Summarizing the above result, we have shown that all hybrids from Hyb0 to Hyb0,4,l, which
gradually substitutes F 0s with F 1s, satisfy the five properties in Claim 2. Symmetrically, all
hybrids from Hyb1 to Hyb1,4,l, which gradually substitutes F 1 with F 0, also satisfy these
properties in Claim 2. Finally, we conclude that the proof is a nice proof from Hyb0 to
Hyb0,4,l = Hyb1,4,l and to Hyb1, which completes this proof.

Lemma 4. Let 1 ≤ j ≤ l, 1 ≤ i < t∗j , and Hyb0,2,j,i,k for k ∈ [0, 13] defined as follows. We
claim the proof from Hyb0,2,j,i to Hyb0,2′,j,i,k is a nice proof.

Proof. Here we only focus on the program sid = j for simplicity. Define next (deepest) layer
hybrids Hyb0,2,j,i,0, Hyb0,2,j,i,1, . . . , Hyb0,2,j,i,13. The first hybrid corresponds to Hyb0,2,j,i,
and the last one corresponds to Hyb0,2′,j,i. For all 0 ≤ k < 13, the generalized cryptographic
game (CH 0,2,j,i,k, Ḡ0,2,j,i,k, 1/2) is to distinguish between Hyb0,2,j,i,k and Hyb0,2,j,i,k+1, and
reduction R0,2,j,i,k is the straight-line black-box reduction from (CH 0,2,j,i,k, Ḡ0,2,j,i,k, 1/2) to
assumption (CH ′0,2,j,i,k, 1/2). In addition, we specify G0,2,j,i,k for each Hyb0,2,j,i,k, 0 ≤ k ≤ 13.
To see how to verify a “nice” proof if G is not null, go to Hyb0,2,j,i,7 directly.

Hyb0,2,j,i,0. This hybrid corresponds to Hyb0,2,j,i. To generalize it, simply let G0,2,j,i,0 =
null.

Hyb0,2,j,i,1. In this hybrid, the challenger punctures key KA, KB at input (j, i), uses
PRF(KA, (j, i)) and PRF(KB, (j, i)) to compute (skC , vkC) and (skD, vkD) respectively. More
formally, it computesKA{(j, i)} ← PRF.Puncture(KA, (j, i)), rC = PRF(KA, (j, i)), (skC , vkC , vkC,rej) =
Spl.Setup(1λ; rC) andKB{(j, i)} ← PRF.Puncture(KB, (j, i)), rD = PRF(KB, (j, i)), (skD, vkD, vkD,rej) =

Spl.Setup(1λ; rD). The challenger finally outputs an obfuscation of F̂ 0,2,j,i,1 which is identical

to F̂ 0,2,j,i,0 defined except that it uses punctured PRF keys KA{(j, i)}, KB{(j, i)} and ’C’
and ’D’ type keys, and modifies the following codes.

Lines 6 and 7: If t 6= i+1, compute rtype = PRF(Ktype{(j, i)}, (sid, t−1)), and (sktype, vktype, vktype,rej) =
Spl.Setup(λ; rtype) for all type ∈ {A,B}. Else, set vkA = vkC and vkB = vkD.

Lines 22 and 23: If t 6= i, compute r′type = PRF(Ktype{(j, i)}, (sid, t)), and (sk′type, vk
′
type,

vk′type,rej) = Spl.Setup(λ; r′type) for all type ∈ {A,B}. Else, set sk′A = skC and sk′B = skD.

To generalize it, simply let G0,2,j,i,1 = null. The indistinguishability between this and the
previous one is based on iO security, (CH ′0,2,j,i,0, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,2. In this hybrid, in F̂ 0,2,j,i,2 the challenger chooses rC , rD uniformly at random
instead of computing them using PRF(KA, (j, i)) and PRF(KB, (j, i)). In other words, the
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Algorithm 4: F̂ 0,2′,j,i
sid=j

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0,KA,KT , KB, mi

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and

(sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 If Spl.Verify(vksid−1, (sid, st

in, vin, win), σin) = 0, output reject;
4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1)), rB = PRF(KB, (sid, t− 1));

8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
9 Set min = (vin, stin, win, I in) and α = ‘-’ ;

10 If Spl.Verify(vkA,m
in, σin) = 1 set α = ‘A’ ;

11 If α = ‘-’ and (t > t∗ or t ≤ i+ 1 ) output reject;
12 If α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 set α = ‘B’ ;
13 If α = ‘-’ output reject;

14 if α = ‘B’ or t ≤ i+ 1 then
15 Compute (stout, aoutM←A)← F 1(stin, ainA←M)

16 else
17 Compute (stout, aoutM←A)← F 0(stin, ainA←M)

18 If stout = reject, output reject;

19 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

20 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

21 Compute r′A = PRF(KA, (sid, t)), r
′
B = PRF(KB, (sid, t));

22 Compute (sk′A, vk
′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk

′
B, vk

′
B,rej) = Spl.Setup(1λ; r′B);

23 Set mout = (vout, stout, wout, Iout);
24 if t = i+ 1 and min = mi then
25 Compute σout = Spl.Sign(sk′A,m

out);

26 else if t = i+ 1 and min 6= mi then

27 Compute σout = Spl.Sign(sk′B,m
out);

28 else
29 Compute σout = Spl.Sign(sk′α,m

out);

30 if stout returns halt for termination then
31 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
32 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

33 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

34 else

35 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;
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secret key/verification key pairs are sampled as (skC , vkC)← Spl.Setup(1λ) and (skD, vkD)←
Spl.Setup(1λ). To generalize it, simply let G0,2,j,i,2 = null. The indistinguishability between
this and the previous one is based on selectively secure puncturable PRF, (CH ′0,2,j,i,1, 1/2) =
(CH PRF, 1/2).

Hyb0,2,j,i,3. In this hybrid, the challenger computes constrained signing keys using the
Spl.Split algorithm. As in the previous hybrids, the challenger first computes the i-th mes-
sage mi. Then, it computes the following:
(σC,one, vkC,one, skC,abo, vkC,abo) = Spl.Split(skC ,m

i) and (σD,one, vkD,one, skD,abo, vkD,abo) = Spl.Split(skD,m
i).

The challenger finally outputs an obfuscation of F̂ 0,2,j,i,3 which is similar to F̂ 0,2,j,i,1 except
that the following codes.

Data: Hardwire σC,one, skD,abo instead of skC , skD.

Line 26: Compute σout = σC,one.

Line 28: Compute σout = Spl.AboSign(sk′D,abo,m
out).

To generalize it, simply let G0,2,j,i,3 = null. The indistinguishability between this and the
previous one is based on iO security, (CH ′0,2,j,i,2, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,4. This hybrid is similar to the previous one, except that in F̂ 0,2,j,i,4 the chal-
lenger hardwires vkC,one instead of vkC . To generalize it, simply let G0,2,j,i,4 = null. The
indistinguishability between this and the previous one is based on vkone indistinguishability,
(CH ′0,2,j,i,3, 1/2) = (CH vkone , 1/2).

Hyb0,2,j,i,5. This hybrid is similar to the previous one, except that in F̂ 0,2,j,i,5 the challenger
hardwires vkD,abo instead of vkD. As in the previous hybrid, the challenger uses Spl.Split to
compute (σC,one, vkC,one, skC,abo, vkC,abo) and (σD,one, vkD,one, skD,abo, vkD,abo) from skC and skD
respectively. To generalize it, simply let G0,2,j,i,5 = null. The indistinguishability between this
and the previous one is based on vkabo indistinguishability, (CH ′0,2,j,i,4, 1/2) = (CH vkabo , 1/2).

Hyb0,2,j,i,6. In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,j,i,6 which performs
extra checks before computing the signature. In particular, the program additionally checks
if the input corresponds to step i + 1. If so, it checks whether min = mi or not, and
accordingly outputs either ‘A’ or ‘B’ type signature. Formally, F̂ 0,2,j,i,6 is similar to F̂ 0,2,j,i,5

except adding the code.

Between Lines 28 and 29: Else if t = i+1 andmin = mi, compute σout = Spl.Sign(sk′A,m
out).

Else if t = i+ 1 and min 6= mi, compute σout = Spl.Sign(sk′B,m
out).

To generalize it, simply let G0,2,j,i,6 = null. The indistinguishability between this and the
previous one is based on iO security, (CH ′0,2,j,i,5, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,7. In this hybrid, the challenger makes the accumulator read enforcing to prepare

the initial configuration from (PPhAcc, ŵ0, ˆstore0)← hAcc.SetupEnforceRead(1λ;T, I i). Then,
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the challenger outputs an obfuscation of F̂ 0,2,j,i,7 which is similar to F̂ 0,2,j,i,6 but uses PPhAcc

of the enforcing mode instead.
To generalize it, let G0,2,j,i,7 = INDEX∗0,2,j,i,7(·), which outputs reading location I i at

session program Fj and time i for any input α = (mem, F1, F2, . . . ). The indistinguishability
between this and the previous hybrid is based on indistinguishability of read-setup hAcc,
assumption (CH ′0,2,j,i,6, 1/2) = (CH hAcc,r, 1/2).

Claim 4. With the generalized game (CH 0,2,j,i,6, Ḡ0,2,j,i,6, 1/2) and reduction R0,2,j,i,6, we
claim that all of the five properties of the nice proof hold.

Proof. We check each property as follows.

• Property 1 holds because reduction R0,2,j,i,6 is based on assumption (CH hAcc,r, 1/2).

• Property 2 holds because Hyb0,2,j,i,6 and Hyb0,2,j,i,7 are neighboring hybrids, which
have the same interface.

• Property 3”: To meet the definition of the nice reduction (See Definition 15), we need to
syntactically check the whole procedures inM1 = CH 0,2,j,i,6 andM2 = (CH hAcc,r↔R0,2,j,i,6).
M1 and M2 perform almost the same procedures (except there are interactions between
CH hAcc,r↔R0,2,j,i,6), R0,2,j,i,6 is a nice reduction.

• Property 4 holds because G0,2,j,i,7 outputs an INDEX in a polynomial range.

• Property 5: To show this, it suffice to show (Hyb0,2,j,i,7, G0,2,j,i,7) and (Hyb0,2,j,i,7,0)
indistinguishable to G0,2,j,i,7-selective adversaries. That is, G(α) is either I i or 0, and
then Hyb0,2,j,i,7 passes I i or 0 to hAcc.SetupEnforceRead to prepare its initial config-
uration. By indistinguishability of read-setup hAcc, hAcc.SetupEnforceRead(·, I i) and
hAcc.Setup(·) are indistinguishable, and hAcc.Setup(·) and hAcc.SetupEnforceRead(·, 0)
are indistinguishable. Those implies the first and the third are indistinguishable, and
thus Property 5 holds.

Hyb0,2,j,i,8. In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,j,i,8 which runs F 1

instead of F 0 , if on (i+1)-st step, the input signature ‘A’ verifies. Note that the accumulator
is ‘read enforced’ in this hybrid. The modification is shown below.

Line 13: If α = ‘B’ or t ≤ i+ 1 then

To generalize it, letG0,2,j,i,8 = INDEX∗0,2,j,i,7(·) (because this hybrid still perfroms SetupEnforceRead).
The indistinguishability between this and the previous one is based on iO security, (CH ′0,2,j,i,7, 1/2) =
(CH iO, 1/2). With SetupEnforceRead, we claim this is a nice proof similar to Claim 4.

Hyb0,2,j,i,9. In this hybrid, the challenger uses setup of the normal mode for the accu-

mulator related parameters, so it computes (PPhAcc, ŵ0, ˆstore0) ← hAcc.Setup(1λ;T ). The
remaining steps are exactly identical to the corresponding ones in the previous hybrid. Fi-
nally, the challenger outputs an obfuscation of F̂ 0,2,j,i,9 which is similar to F̂ 0,2,j,i,8 except
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PPhAcc of the normal mode. To generalize it, simply let G0,2,j,i,9 = null. The indistinguisha-
bility between this and the previous one is based on indistinguishability of read-setup hAcc,
(CH ′0,2,j,i,8, 1/2) = (CH hAcc,r, 1/2). Again, similar to Claim 4, we claim this is a nice proof.

Hyb0,2,j,i,10. In this hybrid, the challenger computes (σC,one, vkC,one, skC,abo, vkC,abo) = Spl.Split(skC ,m
i),

but does not compute (skD, vkD). It outputs an obfuscation of F̂ 0,2,j,i,10 which is similar to

F̂ 0,2,j,i,9 except that it hardwires
(KA{(j, i)}, KB{(j, i)}, σC,one, vkC,one, skC,abo, vkC,abo,mi). Note that the hardwired keys for
verification/signing (σC,one, vkC,one, skC,abo, vkC,abo) are all derived from the same signing key
skC , whereas the first two from skC and the next two from skD in the previous hybrid. To
generalize it, simply let G0,2,j,i,10 = null. The indistinguishability between this and the pre-
vious one is based on splitting indistinguishability of splittable signature, (CH ′0,2,j,i,9, 1/2) =
(CH Spl, 1/2).

Hyb0,2,j,i,11. In this hybrid, the challenger chooses (skC , vkC)← Spl.Setup(λ) and then out-

puts an obfuscation of F̂ 0,2,j,i,11 which only hardwires (KA{(j, i)}, KB{(j, i)}, skC , vkC ,mi).

Comparing to F̂ 0,2,j,i,1, it does the following modifications in F̂ 0,2,j,i,11.

Lines 6 and 7: If t 6= i + 1, compute rtype = PRF(Ktype{(j, i)}, (sid, t − 1)), and (sktype,
vktype, vktype,rej) = Spl.Setup(λ; rtype) for all type ∈ {A,B}. Else, set vkA = vkC .

Line 10: If α = ‘-’ and (t > t∗j or t ≤ i+ 1) output reject.

Lines 22 and 23: If t 6= i, compute r′type = PRF(Ktype{(j, i)}, (sid, t)), and (sk′type, vk
′
type,

vk′type,rej) = Spl.Setup(λ; r′type) for all type ∈ {A,B}. Else, set sk′A = skC .

Lines 25 to 30: If t = i, compute σout = Spl.Sign(sk′A,mout).
Else if t = i+ 1 and min = mi, compute σout = Spl.Sign(sk′A,mout).
Else if t = i+ 1 and min 6= mi, compute σout = Spl.Sign(sk′B,mout).
Else, compute σout = Spl.Sign(sk′α,mout)

To generalize it, simply let G0,2,j,i,11 = null. The indistinguishability between this and the
previous one is based on iO security, (CH ′0,2,j,i,10, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,12. In this hybrid, the challenger chooses the randomness rC used to compute
(skC , vkC) pseudorandomly; that is, it sets rC = PRF(KA, (j, i)). To generalize it, simply
let G0,2,j,i,12 = null. The indistinguishability between this and the previous one is based on
selectively secure puncturable PRF, (CH ′0,2,j,i,11, 1/2) = (CH PRF, 1/2).

Hyb0,2,j,i,13. This hybrid corresponds to Hyb0,2′,j,i. To generalize it, simply let G0,2,j,i,13 =
null. The indistinguishability between this and the previous one is based on iO security,
(CH ′0,2,j,i,12, 1/2) = (CH iO, 1/2).
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7 Adaptive GRAM with Persistent Database

After obtaining adaptive CiO which forces the obfuscated program to be executed as in-
tended, we can extend it to an adaptive garbling scheme for RAM computation (GRAM)
which provides input and program privacy. In the persistent database setting, the privacy of
the entire sequence of inputs and programs is preserved, but the output of each program in
the sequence will be learnt by the decoder in the clear. At a high level of our construction,
for database garbling, the database will be compiled into the oblivious version by ORAM
algorithm, and then all database cells will be encrypted. For program garbling, we compile
each program P into an ORAM program Po, produce Pe by adding decryption and encryption
in the beginning and end of Po, and finally obtain the garbled program P̃ ← CiO(Pe).

7.1 Definition

For any RAM program P that computes on database mem and outputs bit b at halting time
t∗, we denote it by

(y = (t∗, b),mem′)← P (mem),

where mem′ is the updated database modified by program P . We stress that database is
persistent if mem′ can be taken as input to the succeeding program P ′. We assume that
w.l.o.g. any short input to P can be hard-coded in P directly, and halting time t∗ is given
in output y.

A garbling scheme to garble RAM programs and persistent database consists of three
algorithms: the first is to garble initial database, the second is to garble a RAM program
that could read and write that database and then return an output, and the third is to
evaluate those garbled database and programs.

Definition 28 (GRAM with Persistent Database). A GRAM scheme with persistent
database consists of algorithms GRAM = GRAM.{DBGarble,PGarble,Eval} described be-
low.

GRAM.DBGarble(1λ,mem0, S)→ (m̃em1, sk): The database garbling algorithm DBGarble
is a randomized algorithm which takes as input the security parameter 1λ, database mem0,
and a space bound S. It outputs a garbled database m̃em1 and a secret key sk.

GRAM.PGarble(1λ, sk, sid, Psid)→ P̃sid: The algorithm PGarble is a randomized algorithm
which takes as input the security parameter 1λ, the secret key sk, the session ID sid, the
description of a RAM program Psid with time bound T and space bound S. It outputs a
garbled program P̃sid.

GRAM.Eval(1λ, T, S, P̃sid, m̃emsid) → (ysid, m̃emsid+1): The evaluating algorithm Eval is
a deterministic algorithm which takes as input the security parameter 1λ, time bound T
and space bound S, a garbled program P̃sid, and the previous database m̃emsid. It outputs
(ysid, m̃emsid+1) or ⊥, where (ysid,memsid+1) = Psid(memsid).
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Correctness. A garbling scheme GRAM is said to be correct if

Pr[(m̃em1, sk)← GRAM.DBGarble(1λ,mem0, S); P̃sid ← GRAM.PGarble(1λ, sk, sid, Psid);

(ysid, m̃emsid+1)← GRAM.Eval(1λ, T, S, P̃sid, m̃emsid);

(y′sid,memsid+1)← Psid(memsid) : ysid = y′sid ∀sid, 1 ≤ sid ≤ l] = 1.

Adaptive Security. A garbling scheme GRAM = GRAM.{DBGarble,PGarble,Eval}
with persistent database is said to be adaptively secure if for all sufficiently large λ ∈ N,
for all total round l ∈ poly(λ), time bound T , space bound S, for every interactive PPT
adversary A, there exists an interactive PPT simulator S such that A’s advantage in the
following security game Exp-GRAM(1λ,GRAM,A,S) is at most negligible in λ.

Exp-GRAM(1λ,GRAM,A,S)

1. The challenger C chooses a bit b ∈ {0, 1}.
2. A chooses and sends database mem0 to challenger C.

3. If b = 0, challenger C computes (m̃em1
, sk) ← DBGarble(1λ,mem0, S). Otherwise, C

simulates (m̃em1
, sk) ← S(1λ, |mem0|), where |mem0| is the length of mem0. C sends

m̃em1 back to A.

4. For each round sid from 1 to l,

(a) A chooses and sends program Psid to C.

(b) If b = 0, challenger C sends P̃sid ← GRAM.PGarble(1λ, sk, sid, Psid) to A. Other-

wise, C simulates and sends P̃sid ← S(1λ, sk, sid, 1|Psid|, ysid, T, S) to A, where ysid is
defined by the honest computation of program Psid on database memsid: Psid(memsid)→
(memsid+1, ysid).

5. A outputs a bit b′. A wins the security game if b = b′.

We notice that an unrestricted adaptive adversary can adaptively choose RAM programs
Pi depending on the program encodings it receives in the above game, whereas a restricted
selective adversary can only make the choice of programs statically at the beginning of the
execution.

Efficiency. For all session sid, we require DBGarble and PGarble runs in time Õ(|mem0|)
and Õ(poly(|Psid|)), and efficient Eval runs in time Õ(t∗sid).

7.2 Constructing Adaptive GRAM from CiO
Our construction of adaptive GRAM with persistent database is very similar to the selective
version. It uses puncturable PRF, ORAM, PKE and the new primitive, adaptively secure CiO
with persistent database (presented in Section 6). To garble both database and programs, we
follow the same natural idea: we use oblivious RAM to hide the access pattern and public-key
encryptions to hide the content (including the input), and then we use CiO to obfuscate the
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compiled computation instance. To evaluate garbled programs, we directly evaluate them
using CiO evaluation.

GRAM.DBGarble(1λ,mem, S) → (sk, m̃em1): The database garbling algorithm DBGarble

takes following steps to generate secret key sk and the encoding m̃em
1
.

1. Randomly chooses puncturable PRF keys KE and KN .

2. (ORAM) Compile database mem0 with ORAM algorithm into oblivious database mem0
o,

where the randomness used by ORAM is sampled uniformly.

The description length of mem0 could be independently less than space bound S, and
thus |mem0

o| is proportional to |mem0|.
3. (PKE) Encrypt oblivious database mem0

o into mem0
e using PKE scheme and pk created

from KE.

4. (CiO) Obfuscate mem0
e using CiO.DBCompile(1λ,mem0

e)→ (m̃em
1,0
, s̃t

1,0
, skCiO).

5. Output secret key sk = (KE, KN , skCiO) and garbled database m̃em
1

= (m̃em
1,0
, s̃t

1,0
).

GRAM.PGarble(1λ, sk, sid, Psid)→ P̃sid: The program garbling algorithm PGarble takes fol-

lowing steps to generate garbled program P̃sid.

1. Parse secret key sk = (KE, KN , skCiO).

2. (ORAM) Compile program Psid with ORAM algorithm into oblivious program P [KN ]sid,o,
which computes pseudo-randomnesses from KN and then passes them to ORAM.

3. (PKE) Compile P [KN ]sid,o into P [KN , KE]sid,e that decrypts input and encrypts output
at each step with PKE and keys generated from KE (Algorithm 5), where the only
exception is not to encrypt the halting state which contains the output of Psid. Here
the encrypted state (resp., encrypted memory contain) is denoted by st (resp., b ).

4. (CiO) Obfuscate P [KN , KE]sid,e into P̃sid using CiO.Obf(1λ, skCiO, P [KN , KE]sid,e) →
P̃sid.

5. Output garbled program P̃sid.

GRAM.Eval(1λ, T, S, P̃sid, m̃emsid)→ (ysid, m̃emsid+1):

1. Parse database m̃em
sid

= (m̃em
sid,0

, s̃t
sid,0

).

2. (CiO) Evaluate CiO.Eval(m̃em
sid,0

, s̃t
sid,0

, P̃sid)→ (m̃em
sid+1,0

, s̃t
sid+1,0

).

3. Output ysid by parsing it from s̃t
sid+1,0

, and output new garbled database m̃em
sid+1

=

(m̃em
sid+1,0

, s̃t
sid+1,0

). Note that parsing ysid is trivial because it is not encrypted in
P [KN , KE]sid,e.
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Algorithm 5: P [KN , KE]sid,e, the program working with encrypted data (formalized
as a step circuit).

Input : s̃t
in

= ( st
in
, t), ãin = (I in, ( b

in
, lwin))

Data: T,KE, KN , sid
1 if t = 0 then
2 Set stin = init, I in = ⊥, bin = ⊥;

3 else

4 // Decrypt input state st
in

and reading bit b
in

5 Compute (rlw1 , r
lw
2 , r

lw
3 , r

lw
4 ) = PRF(KE, lw

in), (pklw, sklw) = PKE .Gen(1λ; rlw1 ), and

decrypt bin = PKE .Decrypt(sklw, b in
);

6 Compute (rt−1
1 , rt−1

2 , rt−1
3 , rt−1

4 ) = PRF(KE, (sid, t− 1)),

(pkt−1, skt−1) = PKE .Gen(1λ; rt−1
3 ), and decrypt stin = PKE .Decrypt(skt−1, st

in
);

7 Run one step of the ORAM compiled program P [KN ]sid,o with state (stin, accessing
index I in, reading bit bin, and ORAM randomness ρ = PRF(KN , t). Let the output be
(stout, Iout, bout);

8 if stout = (halt, ·) then

9 Output s̃t
out

= stout

10 else

11 // Encrypt output st
out

and writing bit b
out

12 Compute (rt1, r
t
2, r

t
3, r

t
4) = PRF(KE, (sid, t));

13 Compute (pklw, sklw) = PKE .Gen(1λ; rt1), and encrypt

b
out

= PKE .Encrypt(pklw, bout; rt2);
14 Compute (pkt, skt) = PKE .Gen(1λ; rt3), and encrypt

st
out

= PKE .Encrypt(pkt, stout; rt4);

15 Output s̃t
out

= ( st
out
, t+ 1), ãout = (Iout, ( b

out
, (sid, t))) ;
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With the same argument from the selective GRAM, it is straightforward to verify the
correctness and efficiency of the above construction. Next, we present a theorem for its
security.

Theorem 7. Let PKE be an IND-CPA secure public key encryption scheme, CiO be an
adaptive computation-trace indistinguishability obfuscation scheme in RAM model, PRF be
a secure puncturable PRF scheme. Then GRAM is a secure garble RAM scheme with
persistent database.

Proof. In this proof, we follow the abstraction (Section 3) and Theorem 3 again to argue our
GRAM construction is adaptively secure. Note that we already have a selective proof to
show our GRAM construction is selectively secure since we can use that proof of (selective)
security in [CCC+16] with the stronger notion of adaptively secure CiO. Let the sequence
of hybrids in the selective proof be Exp-Real = H0 ≈ H1 · · · ≈ H`(λ)+1 = Exp-Sim. To
apply Theorem 3, we firstly model the selective proof as generalized cryptographic games
and reductions with specific functions G, which are efficiently and reversibly computable
functions. Secondly, we check the selective proof is a “nice” proof which satisfies all properties
1, 2, 3”, 4, 5 listed in Claim 2. Finally, it follows by Theorem 3 that experiments Exp-Real
and Exp-Sim of our GRAM construction are indistinguishable against adaptive adversaries.

We use a systematic way to check the selective proof which satisfies all these proper-
ties even though there is a long sequence of hybrids, cryptographic games to distinguish
neighboring hybrids, and reductions. In particular, to work with generalized cryptographic
games, we need to define the function G for each hybrid game corresponding to reduction.
In general, the ith hybrid can be modeled as an interactive garbler Hi that receives Gi(α) as
its global information. Define generalized cryptographic game (CH i, Gi||Gi+1, 1/2) where an
adversary distinguishes between (Hi, Hi+1) with given Gi(α)||Gi+1(α). Let the interactive
machine Ri be the reduction from a game (CH i, Gi||Gi+1, 1/2) to a falsifiable assumption
(CH ′i, τ

′
i), which is one of the assumptions stated in Theorem 7.

To complete the above well-defined games and reductions with specific functions Gi, we
check all hybrids Hi and observe that Hi takes as input only the prefix message to compute
their every output. Thus, we simply define function Gi be null for all Hi. Note that CiO
(used in DBGarble and PGarble as a black-box way) does not need any global information
G(α).

With well-defined generalized games (CH i, Gi||Gi+1, 1/2) and reductions Ri, we check
they satisfy all five properties in Claim 2, which then states they constitute a “nice” proof.

1. Security based on falsifiable assumptions. The selective proof is based on: indis-
tinguishability of adaptive CiO, selective security of puncturable PRF, and IND-CPA
security of PKE scheme.

2. Security via hybrid argument. This holds as all hybrids Hi have the same interface
as the real experiments when interacting with the adversary.

3”. Nice reductions. For each pair of CH i and CH ′i↔Ri that both receive Ḡi(α), we need
to check if their output distributions are µ-close for every prefix ρ = (m1, a1,
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m2, a2, · · · ,m`−1, a`−1,m`) of a Ḡi-consistent transcript of messages. Fortunately, by
looking into CH i and CH ′i↔Ri and comparing their procedures syntactically, we ob-
served their procedures are almost identical even though Ri passes its partial procedures
to CH ′i. Therefore, ∆(DCH i

(λ, ρ),DCH ′i↔Ri(λ, ρ)) is 0, and Ri is 0-nice by Definition 15.

Remark 2. To show this property holds for each reduction Ri such that reduces game
(CH i, Ḡi, 1/2) to CiO assumption (CH ′CiO, 1/2), we require that CiO is secure against
adaptive adversaries. If CiO was only selective, then its assumption (CH ′CiO,sel, 1/2)
would be a cryptographic game that takes the whole global information (mem, P1, P2, . . . )
as the first message; thus, it would be quite difficult (if any) to find a nice reduction R
such that ∆(DCH i

(λ, ρ),DCH ′CiO,sel↔R(λ, ρ)) is negligible. With adaptive CiO, it is trivial
to show Ri is syntactically nice, and that is the reason why we need adaptive CiO in
above Property 1.

4. Gi with polynomial-sized ranges. Note that, for all i, function Gi is always null,
which has constant-sized range.

5. Hiding to adaptive adversaries Gi. This property requires (HI ,GI) and (HI ,0) are
indistinguishable to GI-selective adversaries for any function I(λ), where 0 is the con-
stant zero function. Let Hi = {Hi,λ}, Gi = {Gi,λ} for large enough λ. Because Hi never
uses Gi(α) no matter Gi is null or 0, Gi is hiding for all i with any large enough λ.

Finally, we conclude that the selective proof is a nice proof that satisfy these five properties,
and therefore by Theorem 3, experiments Exp-Real and Exp-Sim are indistinguishable against
adaptive adversaries.

8 Garbled RAM to Delegation: Adaptive Setting

To construct the adaptive RAM delegation, we have to consider full privacy and soundness
(Definition 18). There are known generic transformations [AIK10,GHRW14] from GRAM to
that with full privacy and soundness. We follow that transformation with slight modifications
to build the RAM delegation.

Firstly, output privacy is achieved by compiling P into Pop which hardwires one-time
key key, takes memory and state as input, and finally computes y as output and returns
c = Enckey(y). The client can recover y by decrypting c with key. The entire view of
the evaluator can be simulated given the values c (or the length of c by some security of
encryption scheme Enc), and thus the evaluator learns nothing about the outputs y.

Secondly, we can also add soundness by using verifiable computation in which the received
output c is indeed the correct output encoding of the computation. To do this, we compile
Pop into Pop,ver which additionally hardwires a one-time MAC key sk, returns c as above,
and moreover generates a one-time MAC σ of c. The client can use the MAC key sk and
encryption c to verify whether σ is valid. The entire view can be simulated given the
values (c, σ), and thus the evaluator cannot come up with a valid MAC σ′ for any y′ 6= y.

Finally, use our construction of GRAM to compile Pop,ver to the program encoding P̃ .
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Our underlying GRAM is adaptively secure, and thus this RAM delegation also has adap-
tively full privacy and soundness.
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